

Inclusive Learning Communities across the Foundation Coalition

Jeff Froyd, Texas A&M University

Introduction

Part I

Tenets of Learning

- Each learner needs learning goals
- Each learner relates incoming information to his/her existing cognitive network
- Sharing insights with others and listening to their insights help improve your understanding of workshop content
- Effective workshops are partnerships between facilitators and participants.
 - Effective workshops do not occur when participants expect the facilitators to do all the cognitive work
 - Effective workshops do not occur when facilitators expect that participants will be able to "just make sense" out of a large set of informative slides
- Each participant brings many mental models to learning and change experiences.

Mental Models – Ladder of Inference

Observable data \rightarrow Choice of action

- 1. Observable data
- 2. People select the data they will use and ignore the rest.
- 3. People use their personal and cultural beliefs to construct meaning for the data.
- 4. People make assumptions using the added meaning.
- 5. People draw conclusions from the assumptions and selected data.
- 6. People use the conclusions to adopt personal beliefs to use in the future.
- 7. Finally, people select an action based on their beliefs.

	1	
Take action based on personal beliefs	I can't count on John	
Adopt personal beliefs to be used in the future	John always comes in late	
Draw conclusions		
Make assumptions using the added meaning	John knew when the lab started and was deliberately late	
Use personal and cultural beliefs to add meaning	late	
Select the data	John entered lab	
Observable data	30 minutes late	

Engage Participant Resistance

- Learning is change; change is learning.
- Possible sources of participant resistance
 - You are unsure about who we are and why we might be qualified.
 - You are unsure about whether inclusive learning communities are appropriate for your campus.
 - You are unsure about how the workshop material will be relevant to your work and the challenges you face.

Introduction: Basic Guidelines

- Will operate in a team-based mode
 - The group knows more than any one person
- Interrupt frequently
 - No pre-defined set of material that "must" be covered in this workshop
- When looking at inclusive learning communities, we will focus on
 - Alternative structures
 - Lower division curricula

Introduction: Team Formation

- Self-Organize into four-person groups
 - -Want to emphasize both departmental diversity
 - Try to organize so that you have no more than one departmental representative per team
 - Introduce yourselves (name & institution) within the group

Background

- Alexander Meiklejohn, Experimental College, University of Wisconsin, 1927-1932
 - Two-year program of study, democracy in fifth century Athens, 19th and 20th century America
- Joseph Tussman, University of California-Berkeley, 1965-1967
 - Two-year program instead of a collection of courses

Building Connections Among Students

- Common element linked/clustered courses: students enroll in common sections for two or more courses
- Engineering projects help connect science, mathematics and engineering.
- Additional mechanisms are often used to develop community in an academic context.

Building Connections Among Students

- Alternative mechanisms
 - Coordinated/integrated syllabi
 - Syllabi linked in real-time or ahead of time
 - Student advisors: Freshman Interest Groups (FIG)
 - Peer, undergraduate, graduate
 - Structured study times, study nights
 - Common student teams across cluster
 - Team assignments, e.g., engineering projects
 - Enrichment seminar: Federated Learning Community
 - May include a "master learner"

Why "Inclusive" in ILC?

- Integrate mechanisms that allow participation of industry and/or other external constituencies
 - Externally-sponsored projects
 - Industry-presented case studies
 - Industry nights
 - Industry-presented skills workshops, e.g., conflict resolution
- Increase appreciation for diversity and its multiple values
 - Team experiences
 - Diversity workshops, industry-sponsored diversity workshops

Introduction: Share information

 Within your group: discuss the following question among yourselves

What might be advantages of inclusive learning communities on your campuses?

What might be some barriers?

Describe how this workshop *should* inform your decisions about inclusive learning communities.

Appoint a reporter to capture group results

Group Reports ...

Foundation Coalition Examples

Part II

FC Partner Institutions

- Arizona State University (ASU)
- Rose-Hulman Institute of Technology (RHIT)
- Texas A&M University (TAMU)
- University of Alabama (UA)
- University of Massachusetts-Dartmouth (UMD)
- University of Wisconsin-Madison (UW)

FC Core Competencies

- Active/Cooperative Learning
- Students Teams in Engineering
- Increasing Participation of Women and Underrepresented Minorities in Engineering
- Technology-Enabled Learning
- Curricular Integration
- Continuous Improvement through
 Assessment and Evaluation
- Managing Curricular Change

FC First-Year Curricula

- ASU First-Year: EnGAGE
- RHIT First-Year: IFYCSEM
 - Integrated, First-year Curriculum in Science, Engineering and Mathematics
- TAMU First-Year: No name
- UA First-Year: TIDE
 - Teaming, Integration, Design, Engineering
- UMD First-Year: IMPULSE
 - Integrated Mathematics, Physics, Undergraduate Laboratory Science, Engineering
- UW First-Year: LINKS

EnGAGE ASU First-Year Cohorts

800 Entering Students	CalculusPre- calc, trig, algLinkedIndepe		Calculus II+	Linked		10%	
				Independ		dent	10%
			Integrated		10%		
		Calculus I	Linked		20%		
			Independent		t	20%	
				20%			
		Indepe	ndent		20%		

Integrated - tightly interconnected section of Engineering, Calculus, Physics and English

Linked – students enroll in common sections of two or more of the following: Engineering, Calculus, Physics, English

Independent – independent sections of first-year courses

Freshman Integrated Program in Engineering (FIPE)

F '94 - S '97

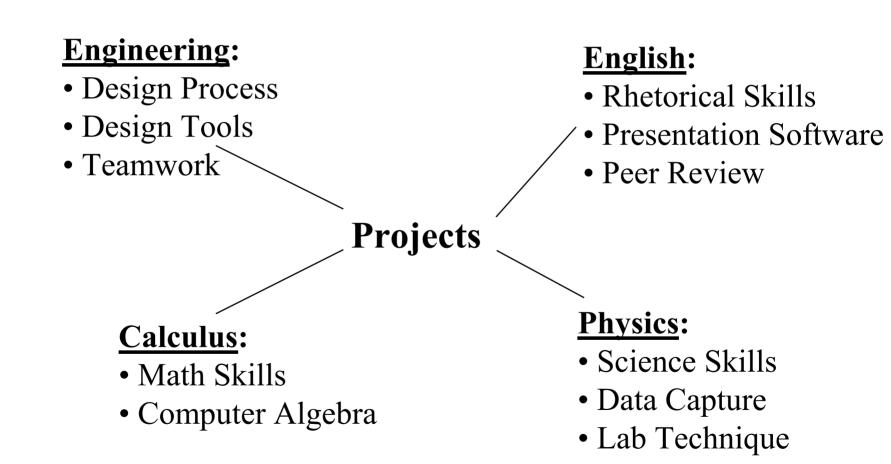
F '97 - present

- English 3 hrs F&S
- Physics 4 hrs F&S
- Calculus 4 hrs F&S
- Engineering 4 hrs F
- Chemistry 4 hrs S

15 hours/semester

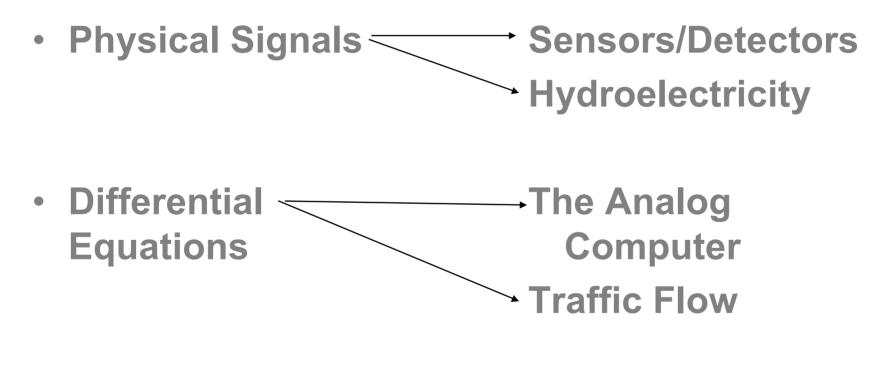
- English 3 hrs F&S
- Physics 4 hrs F&S
- Calculus 4 hrs F&S
- Engineering 2 hrs F&S

13 hours/semester



Arizona State University

Sample ASU Classroom



- Kinematics The Catapult
- Newton's Laws The Bungee Jump
 Rotational Motion The Trebuchet The Roller Coaster

Wave Motion
 The Seismometer

Impact

Retention

4 100% 3.8 3.6 80% 3.4 3.2 **60%** 3 FC 2.8 40% Non-FC 2.6 20% 2.4 2.2 0%-Overall Females Minority 2-Males ^{Technology} LL Learning Integration T_{eaming} **ARIZONA STATE UNIVERSITY**

Attitudes toward FC core ideas

- Three Course Groups chosen from this list
 - Engineering Design (4)
 - Chemistry (4)
 - Chemistry for Engineers or General Chemistry
 - English Composition (3)
 - Computer Programming (3)
 - Programming (C++) or Programming (Java) or Principles of Computing
 - University Physics (4)
 - Mathematics (3 or 4)
 - Precalculus <u>or</u> Calculus
 - Digital Design (3)

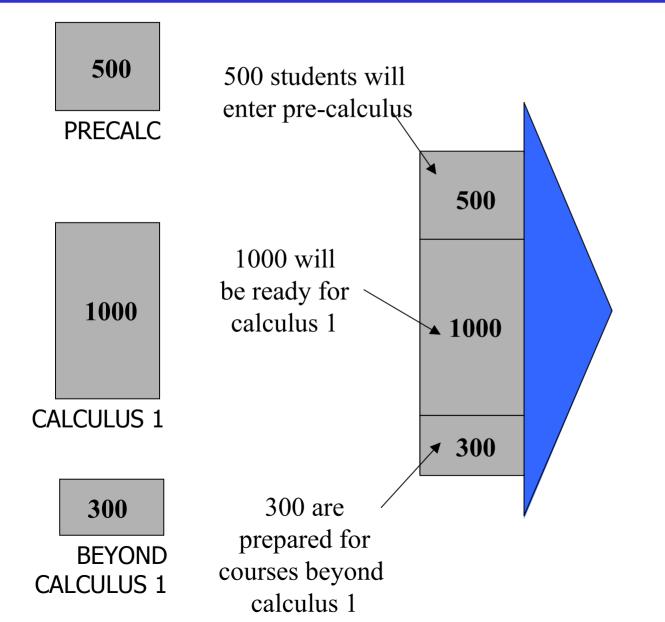
EnGAGE Program - Option 2

- Fall Semester only
- 12 combinations from list
- Student groups of 20-25
- Students expected to take at least one more course

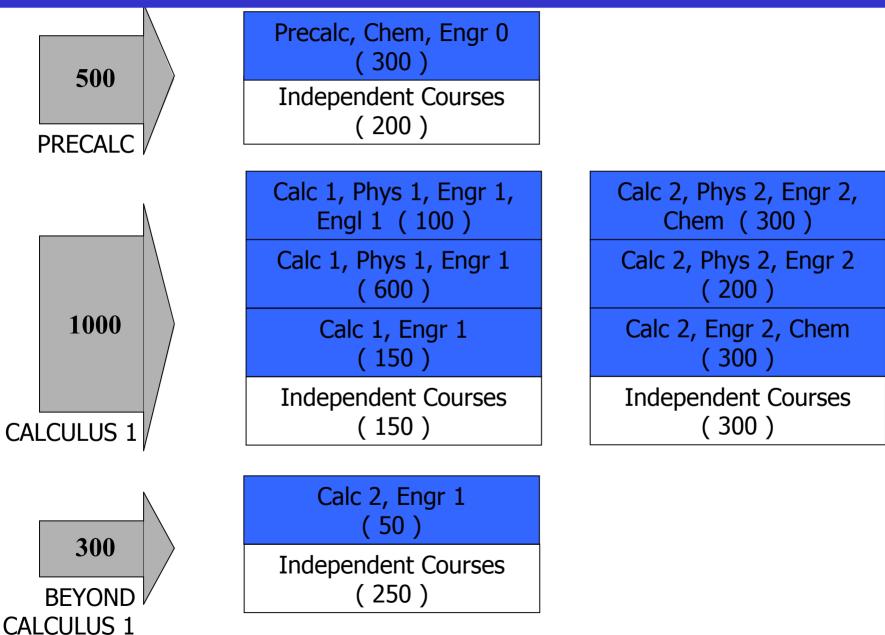
Reflection

THINK-PAIR-SHARE (5 minutes)

- Write down 2-4 ideas that you have gained from conversation about inclusive learning communities at ASU.
- Write down 2-4 items about which you would like additional information


TAMU First-Year Cohorts

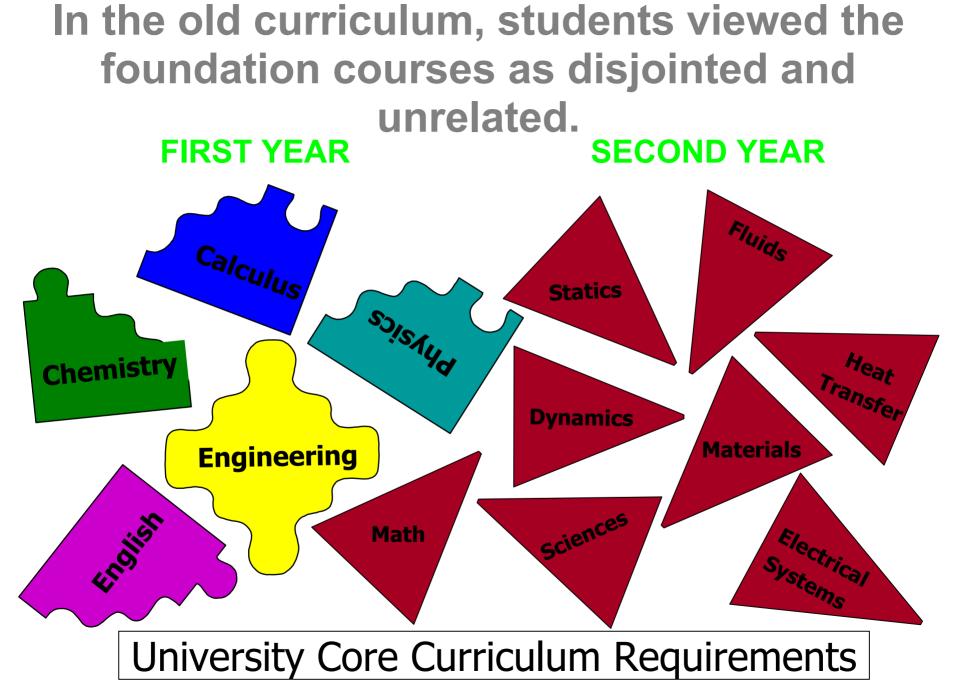
1800 Entering Students			Calculus	Linked			3%
			11+	Inde	epen	dent	14%
		Calculus I	Linked		47%		
			Independent			8%	
	Pre- calc,	Linked		17%			
	trig, alg Indepe	ndent		11%			


Linked – students enroll in common sections of two or more of the following: Engineering, Calculus, Physics, English

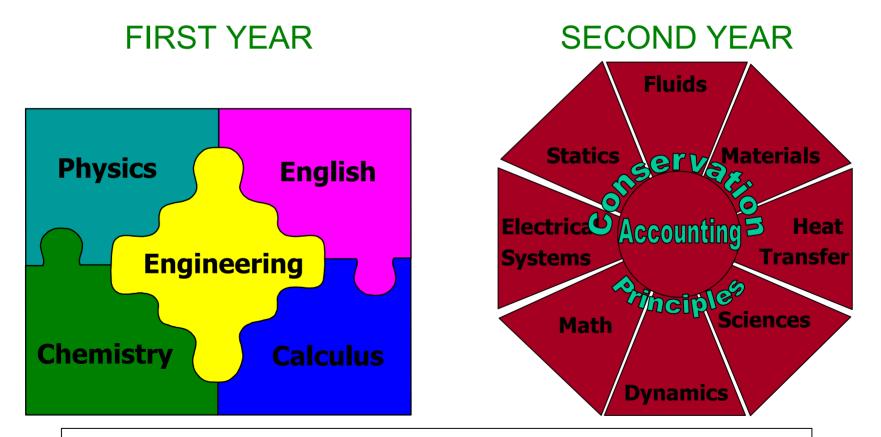
Independent – independent sections of first-year courses

CURRICULUM OPTIONS FOR STUDENTS

First Year



Integration of Courses


First Year

- -Engineering
- -Physics
- -Chemistry
- -Calculus

- Second Year
 - Engineering Sciences
 - Materials
 - Thermodynamics
 - Statics/Dynamics
 - Mechanics
 - Circuits
 - Calculus
- Upper Division

In the integrated curriculum, course material clearly illustrates how these courses relate to the engineering field.

University Core Curriculum Requirements

CASE STUDY TOPICS

APPLIED MATERIALS -

Semiconductor Process Equipment-Cathode Base Field Failures

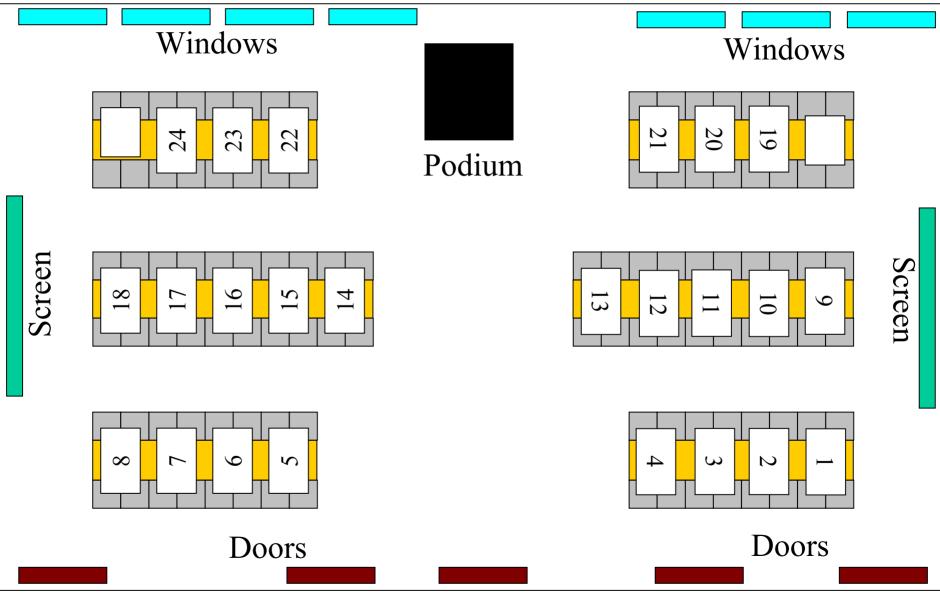
COMPAQ - Weighing Need to Differentiate VS. Benefits of Standardization

DYNACON - Launching Structures in the Offshore Marine Industry

EXXON CHEMICAL - Critical Care-A Case Study in Problem Solving and Team Work MOTOROLA - Bringing Up a New FAB Plant

TEXACO - #1*Getting Natural Gas to Market* #2 *Storage Tank Fire Investigation*

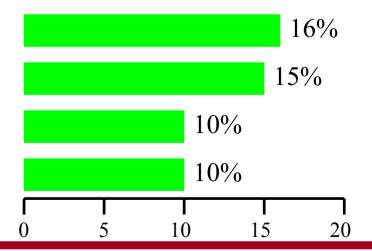
TU ELECTRIC - #1 Over-speed of Auxiliary Turbines #2 Install COHPAC (Compact Hybrid Particulate Collector) at Big Brown Steam Electric Station


LOCKHEED MARTIN - Common Missile Warning System – Optical Sensor Placement

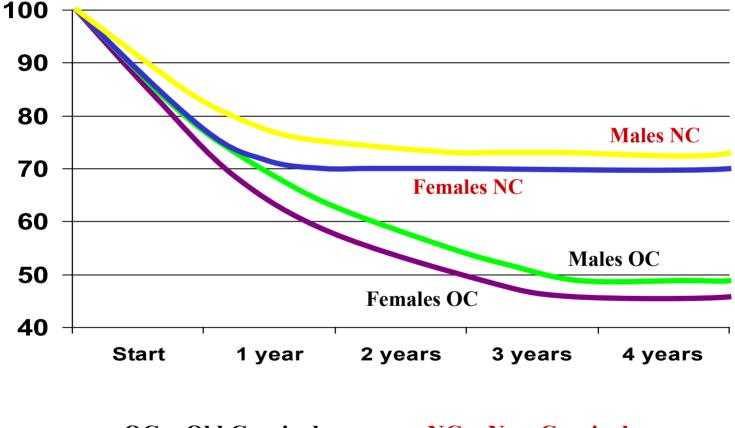
Texas A&M University

- Philosophy
 - Classroom technology must be scalable for large classes (~100)
- Classroom layout & equipment
 - Remodeled about 10 classrooms for first-year and sophomore courses
 - One computer per two students
 - Departments have constructed their own classrooms, more are planned
- Software & Applications
 - Microsoft Office, Maple, AutoCAD, Eng. Equation Solver (EES), Internet
 - EE has students design, simulate, construct, measure and compare behavior of circuits. Class uses NI hardware and software.
- Audience
 - Freshman and sophomore engineering students
 - Specialized classes in specific disciplines

CVLB 319: ENGR 112 Team Layout Sections 501 - 503

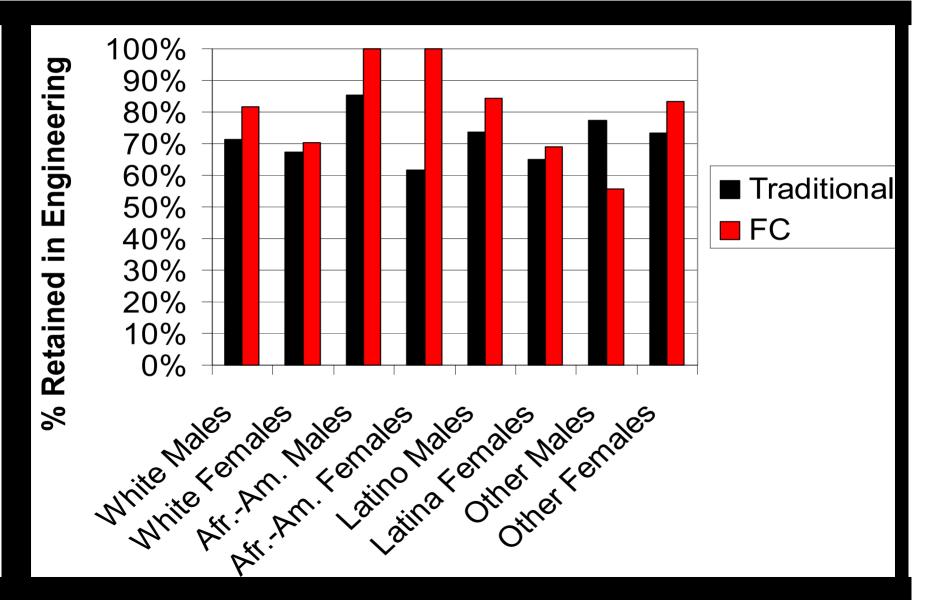

STUDENT PERFORMANCE ON STANDARDIZED TESTS

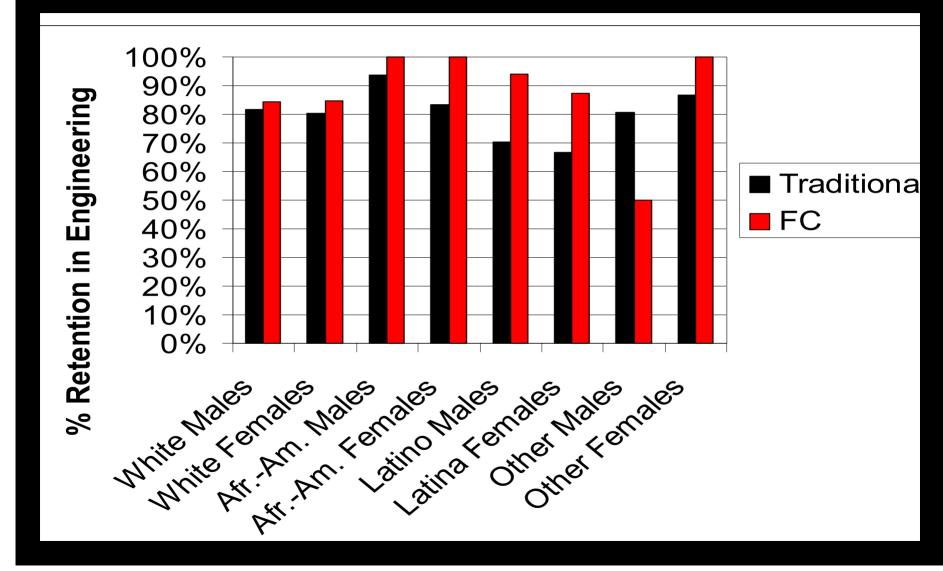
When compared to equivalent students in traditional engineering programs, after one year, students in the new curriculum perform better on standardized tests.


% Gain Greater than Traditional

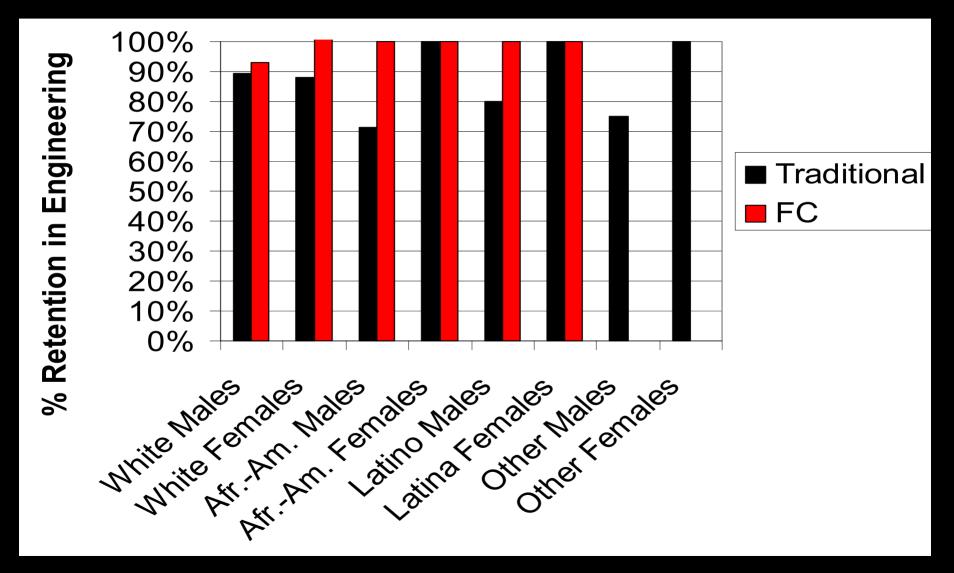
Test

Standardized Critical Thinking Force Concept Inventory Mechanics Baseline Test Calculus Concept Test





OC = Old Curriculum NC = New Curriculum


RETENTION THROUGH FIRST YEAR AT TAMU

RETENTION DURING 2nd YR AT TAMU

RETENTION DURING 3rd YR AT TAMU

- Students in the new curriculum show a significant reduction in class repetition (fewer Ds, Fs, & Qs)
- These students complete foundation course work and graduate a semester sooner (on average) than students who are not involved in the new curriculum

Reflection

THINK-PAIR-SHARE (5 minutes)

- Write down 2-4 ideas that you have gained from conversation about inclusive learning communities at TAMU.
- Write down 2-4 items about which you would like additional information

UA First-Year Cohorts

400 Entering Students	Pre- calc					Linked	5%
					Calculus II+	Independent	1%
			Calculus I		Integrated	40%	
					Linked	2%	
					Independent	1%	
		Pre-calc	Linked		20%		
		algebra & trig.	Ind	ependent	1%		
		Linked	25%			-	
		Independ	ent	1%			

Integrated – tightly interconnected sections of Engineering, Calculus, Physics and English

Linked – students enroll in common sections of two or more of the following: Engineering, Calculus, Physics, English

Independent – independent sections of first-year courses

TIDE – How are math and physics different?

Traditional Math	TIDE Math				
 4 lectures/week, no recitation No graded homework Computers not used 	 3 lectures/week, one 2-hr weekly recitation Homework is graded Computer software used in class and recitation Maple, Matlab 				
Traditional Physics	TIDE Physics				
 Computers not used Topics not linked to other classes 	 Computer software used in lecture and lab Excel, Maple, Interactive Physics Some integration with Math & Engineering Studio Physics - Spring 2002 				

TIDE – How is engineering different?

Traditional Engineering (Fall)	TIDE Engineering (Fall)			
 Traditional board drafting (~1.5 hr) AutoCAD (~1.5 hr) 	 Sketching (~0.5 hr) Intro to engineering and disciplines, problem solving and computer "tools" (~1 hr) Design projects (~1½ hr) Reports, presentations Teaming skills			
Trad. Engineering (Spring)	TIDE Engineering (Spring)			
 Fortran programming (~3 hr) 	 MATLAB programming (~ 1½ hr) Design projects (~1½ hr) –Reports, presentations –Teaming skills 			

University of Alabama

- Philosophy
 - Technology in classrooms, classrooms convenient to students (one new classroom in "engineering dorm")
- Classroom layout & equipment
 - Remodeled six different classrooms
 - Tables for four, one computer per two students
 - Departments constructing their own classrooms
- Software & Applications
 - Microsoft Office, compilers, MATLAB, Maple
- Audience
 - Freshman engineering students
 - All students in introductory computing sequence

Alabama Classroom Layout

- Several classroom formats exist
 - All have computers at student desks, instructor console, projection system
 - Primarily used for lower-division classes

IMPULSE UMD First-Year Cohorts

250 Entering Students			Calculus II+	Integrate		ed	5%
				Indepen		dent	5%
			Integrated		40%	•	
			Independent			15%	
	Pre- calc, trig, alg	Linked			25%		-
		Independent			10%		

Integrated – tightly interconnected section of Engineering, Calculus, Physics and English

Linked – students enroll in common sections of two or more of the following: Engineering, Calculus, Physics, English

Independent – independent sections of first-year courses

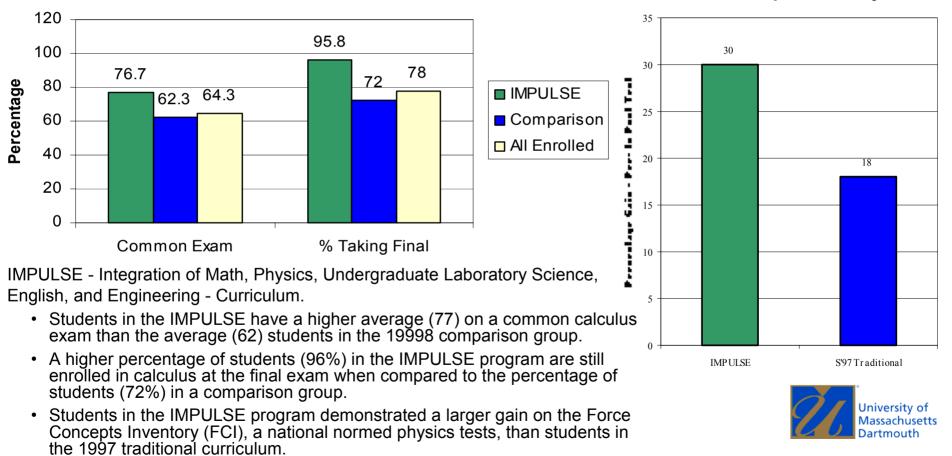
IMPULSE First-Year Curriculum

Courses	Fall	Spring
 Physics for Sci. & Engr. I, II 	4	4
• Principles of Modern Chem. I, II	3	3
• Intro. to Applied Chem. II	0	1
 Critical Writing and Reading I 	3	0
• Intro. to Applied Sci. & Engr. I, II	3	2
• Calc. for Applied Sci. & Engr. I, II	4	4
 IMPULSE Total Credits 	17	14
Program Specific (not IMPULSE) 0	3
Total Credits	17	17

- Classroom layout & equipment
 - Remodeled three classrooms with tables that seat four students and have two computers (48 seats)
- Software & Applications
 - Maple and Excel
 - Based on Studio Physics model (RPI), students perform physics and chemistry experiments in the classroom, acquire, display and analyze data
- Audience
 - Freshman & sophomore engineering majors

University of Massachusetts-Dartmouth

IMPULSE Classroom



Freshman Performance at UMass-Dartmouth Calculus and Physics

Performance in Calculus (Fall Quarter 1998)

Performance on the Force Concept Inventory

700 Entering Students			Calculus	Linked			3%
			11+	Inde	epen	dent	30%
		Calculus I	Linked		6%		
			Independent		t	44%	
	Pre- calc, trig, alg	Linked			5%		
		Independent			12%		

Linked – students enrolled in LINKS, common sections of pairs of the following courses: Engineering and Technical Communication, Calculus and Chemistry. UW students have many other opportunities to participate in learning communities

Independent – independent sections of first-year courses

Roles of Student Teams

- Students work to improve their team skills
- Students work on team assignments, including one or more projects
- Student teams provide interpersonal support for students when they are struggling
- Student teams provide nuclei for larger communities across cluster

Industry Participation - Ideas

- Adoption of a team (of 4 students) or an entire cluster (of 96 students)
- Industry teams would visit their team/cluster 3-6 times a semester
- Industry would develop team projects for a 3-4 week duration based on "real world" problems and the student's skill level
- Industry would help in the introduction and evaluation of projects
- Industry would serve as e-mail consultants to team/clusters
- Deliver course lectures on subjects such as ethics, design process, documentation, teaming, and/or communications
- Host cluster for a field trip to industry
- Develop a case study to be presented by engineers in the classroom
- Send new hires back to the classroom to discuss perceptions and realizations of the workplace
- Send an experienced engineering to talk to the class about their projects
- Conduct industry training like teaming, conflict management, communications, etc.
- Industry do mock interviews, resume writing, dinner with discussion

Industry Participation - FC

- Host cluster for a field trip to industry
 –UA Pilot Program
- Develop a case study to be presented by engineers in the classroom
 —TAMU First-Year Program
- Conduct industry training like diversity, conflict management, communications

 TAMU First-Year: Industry-conducted workshops on diversity, conflict management

Role of First-Year Projects

- Provide students opportunities to apply an engineering design process
- Provide students opportunities to apply their teams skills to an extended project
- Provide students opportunities to connect their mathematics and science concepts to practice of engineering

Campus Transformation

Part III

Campus Transformation

- As a team, design your "ideal" set of inclusive learning communities for the Fall of 2002
 - Describe entering students and how cohorts will be formed
 - Describe addition mechanisms that you will use for strengthening connections within a cohort
 - Describe ways in which you will involve external constituencies in your communities
 - Describe the resources (besides \$\$\$) that would be required to realize your visions
 - Select a different reporter from last time

Text goes here, fill in during workshop

- How well did we achieve the desired results?
- Plus/Delta on the workshop
 - One positive
 - One item for improvement

Londation

FC Publications on Inclusive Learning Communities

- Morgan, J., J. Rinehart and J. Froyd, "Industry Case Studies at Texas A&M University", *Proceedings, 2001 ASEE Annual Conference*, ASEE, Albuquerque, NM, 24-28 June 2001
- Malavé, C., et al., "Inclusive Learning Communities at Texas A&M University—A Unique Model for Engineering," Proceedings of the First Conference on Creating and Sustaining Learning Communities: Connections, Collaboration, and Crossing Borders, Tampa, FL, March 10–13, 1999, Web Publication: <u>http://www.usf.edu/~lc/conf</u>
- 3. Richardson, Jim, Carlos Corleto, Jeff Froyd, P. K. Imbrie, Joey Parker and Ron Roedel, "Freshman Design Projects in the Foundation Coalition," *Proceedings, 1998 Frontiers in Education Conference*, Tempe, AZ, November 1998, Web Publication: <u>http://foundation.ua.edu/publications/fie98/1388.pdf</u>
- 4. Learning Communities Annotated Bibliography, Web Publication: http://www.engr.wisc.edu/services/weel/coalition/bibliography.html

Learning Communities - Resources

- 1. Gabelnick, Faith, Jean MacGregor, Roberta Matthews, Barbara Smith, Learning Communities: Creating Connections Among Students, Faculty, and Disciplines, New Directions for Teaching and Learning, no. 41, Spring 1990, San Francisco: Jossey-Bass Inc.
- 2. National Learning Communities Project, <u>http://www.evergreen.edu/user/washcntr/natlc/NLCPhomepage.shtm</u>
- Al-Holou, Nizar, Nihat M. Bilgutay, Carlos Corleto, John T. Demel, Richard Felder, Karen Frair, Jeffrey E. Froyd, Mark Hoit, Jim Morgan, David L. Wells, "First-Year Integrated Curricula Across Engineering Education Coalitions", *Journal of Engineering Education*, vol. 88, no. 4, October 1999