

Engineering Classrooms Before and After Innovation

David Cordes, University of Alabama, cordes@cs.ua.edu Jeff Froyd, Texas A&M University, froyd@ee.tamu.edu

Workshop Overview

Introduction (20 min)

- Guidelines, what is an "innovative classroom"?
- What Other Institutions Have Done (25 min)

 Information dump
- Classroom Transformation (30 min)
 - What do you do? How do you do this?

Other Issues and Considerations (20 min)

- Items that can impact potential changes
- Wrap-up (5 min)

Introduction: Basic Guidelines

- Will operate in a team-based mode
 - The group knows more than any one person
- Interrupt frequently
 - No pre-defined set of material that "must" be covered in this workshop
- When looking at innovative classrooms, we will focus on
 - The use of technology in the classroom
 - Lower-division engineering courses

Introduction: Share information

 Within your group: discuss the following question among yourselves

What is an innovative classroom? (and could you recognize one if you saw it)

Appoint a reporter to capture group results

Short (~25 minute) information dump

- Background Information
 - one-page introduction to technology-enabled learning

Representative Foundation Coalition efforts

- Arizona State University
- Rose-Hulman Institute of Technology
- Texas A&M University
- University of Alabama
- Other sample initiatives
 - RPI's studio model
 - Drexel's EE laboratories
 - Penn State online forum

New Classroom Environments

Arizona State University Classrooms vary based on need

Philosophy

 College focus on technology in classrooms, different classrooms for different needs, faculty training essential

Classroom layout & equipment

 Hold 40 to 80 students, team-based seating, instructor has ability to project student work on main screens

Software & Applications

 Wide variety, different rooms have different packages, all information available via the Internet

Audience

- All fundamental engineering courses

Arizona State University

Sample ASU Classroom

Rose-Hulman Institute of Tech Student laptop environment

Philosophy

- Completely networked campus environment
- Classroom layout & equipment
 - Every student purchases a notebook computer as an entering student (model is specified by institution)
 - Over 20 classrooms have been equipped with network and power connections to support notebook computers

Software & Applications

 Maple (calculus), Working Model & Maple (dynamics), Physics labs (Excel - data acquisition/analysis)

Audience

All engineering students and classes

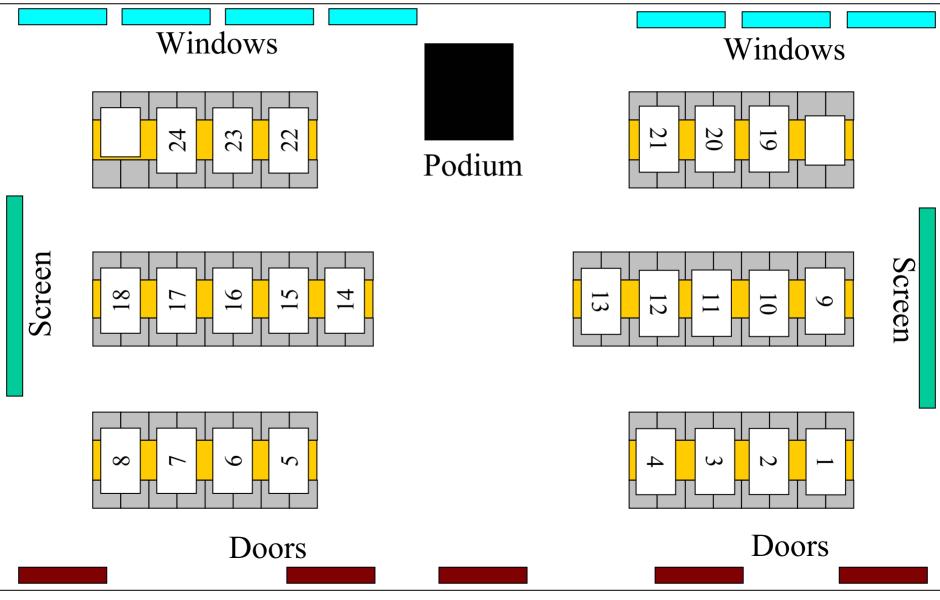
Texas A&M University Issues of scale (large population)

Philosophy

Classroom technology must be scalable for large classes (~100)

Classroom layout & equipment

- Remodeled about 10 classrooms for first-year and sophomore courses
- One computer per two students
- Departments have constructed their own classrooms, more are planned


Software & Applications

- Microsoft Office, Maple, AutoCAD, Eng. Equation Solver (EES), Internet
- EE has students design, simulate, construct, measure and compare behavior of circuits. Class uses NI hardware and software.

Audience

- Freshman and sophomore engineering students
- Specialized classes in specific disciplines

CVLB 319: ENGR 112 Team Layout Sections 501 - 503

University of Alabama One model for all classrooms

Philosophy

 Technology in classrooms, classrooms convenient to students (one new classroom in "engineering dorm")

Classroom layout & equipment

- Remodeled six different classrooms
- Tables for four, one computer per two students
- Departments constructing their own classrooms

Software & Applications

- Microsoft Office, compilers, FORTRAN, Maple

Audience

- Freshman engineering students
- All students in introductory computing sequence

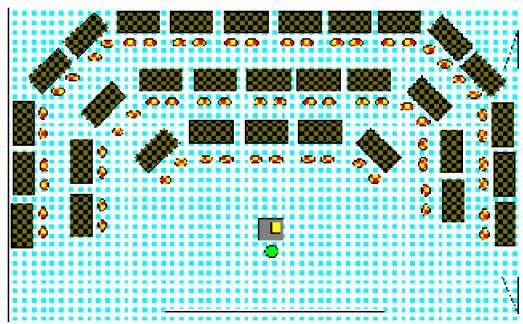
Alabama Classroom Layout

Standard materials in all classrooms

- Student computers, console, projection system
 Primarily used for lower-division classes
- Lavout varies with physical room restrictions

Rensselaer Polytechnic Institute (RPI) Studio Classrooms

Philosophy – studio environment


- Integrate classroom (lecture) with laboratory (experiments, acquire/display/analyze data)
- Classroom layout & equipment
 - Tables with two students (one computer)
 - Student
 - Using computer faces *away* from instructor
 - Listens to lecture facing *away* from computer

Audience

- Mathematics, sciences, engineering students

- Students face instructor during lecture
 - Away from computers
- Student away from instructor when using computers
 - Instructor can see monitors easily

Laboratory layout & equipment

- Laboratory bench for two students (one computer)
- Suite of measurement equipment with computer control
- First-year and sophomore students
 - Perform experiments and laboratory projects for three hours/week

Philosophy

 From the start students work with current equipment and explore stimulating physical phenomena

Audience

Engineering students

Technology in Large Classes Penn State University Large Class Forum

• Penn State Survey (large lecturers, n=54)

- Only 16.7% of faculty to not regularly collect feedback
- Why collect feedback from students?
 - Comprehension checks
 - Surveys/determine preconceptions
 - Check on student preparation
 - Illustrate concepts
 - Survey student attitudes and preferences
- Low-tech methodologies employed
 - Written quizzes (33%), in-class voting (48%)
- How would you utilize "high-tech" survey instruments?
 - 96% quick feedback regarding concepts in lecture
 - 73% surveys or attendance
 - 71% classroom assessment (muddiest point)
 - 67% individual response to class problem solving exercise

- As a team, design your "ideal classroom environment" for the Fall of 2002
 - Describe this classroom environment
 - Describe how your new activities would benefit students and their learning
 - Describe the resources (besides \$\$\$) that would be required to realize your visions
 - Select a different reporter from last time

Other Critical Issues

Design & Utilization

- Rooms available for renovation
- Physical layout considerations
- Equipment (cost, size, location, power, HV/AC)
- Time (often takes more than one summer to build)
- Faculty support and education & development
- Scheduling of these rooms
- Monitoring & after-hours access
- Maintenance & upgrade time availability

Administrative

- Institution's computing policies
- Software licensing
- Purchase, replacement & upgrade costs
- Support staffing
- Clear plan for what inst. is doing with technology
- Impact on T&P process
- Want to assess results, how to best do this
- How to get financial support from State or outside sources?

Resources

- Relevant resources
 - Foundation Coalition
 - www.foundationcoalition.org/
 - Arizona State University
 - www.eas.asu.edu/ceasrooms/
 - www.eas.asu.edu/~asufc/teaming.html
 - Texas A&M University
 - coalition.tamu.edu/
 - RPI Studio Classroom
 - ciue.rpi.edu/studioteaching.html
 - Drexel Classroom
 - www.educatorscorner.com/education/case_studies/drexel.shtml
 - Penn State Large Classroom Forum
 - www.psu.edu/celt/largeclass/forum.shtml
 - Sigma Xi Resources
 - www.sigmaxi.org/scienceresources/undergradedu.htm

End of workshop

Questions?