Computational Skills Class 3

EC 2000 Modules
 Robert Leland

Electrical and Computer Engineering

Class 3: Accuracy

- Euler method for solving differential equations.
- Effect of step size on accuracy.
- Underflow error.

Challenge Problem

Simulate the solution to the differential equation:

$$
\dot{x}=x^{2} \sin (x), \quad x(0)=1.33
$$

for $0<t<5$.

Euler Method

For the differential equation: $\dot{x}=f(x)$
We can write the change in $\mathrm{x}(\mathrm{t})$ as

$$
\begin{aligned}
x(t+h) & =x(t)+\int_{t}^{t+h} f(x(\tau)) d \tau \\
& \approx x(t)+h f(x(t))
\end{aligned}
$$

Step size: h
In general, the smaller the step size, the more accurate the simulation will be, but the longer it will take.

A Matlab program to solve the challenge problem is given on the next slide. Note that here we must use looping, and a vector function solution is not possible.
\% Solve differential equation

$$
\begin{aligned}
& \mathrm{x}(1)=1.33 ; \\
& \mathrm{h}=.01 ;
\end{aligned}
$$

\% initial condition
\% step size
for $\mathrm{k}=2: 501$

$$
\mathrm{x}(\mathrm{k})=\mathrm{x}(\mathrm{k}-1)+\mathrm{h} * \mathrm{x}(\mathrm{k}-1)^{\wedge} 2^{*} \sin (\mathrm{x}(\mathrm{k}-1)) ;
$$

end
$\mathrm{t}=0$:h:5;
\% plot results
$\operatorname{plot}(\mathrm{t}, \mathrm{x})$
title('Solution $\mathrm{x}(\mathrm{t})$ by the Euler Method')

Resulting Graph

Solution $x(t)$ by the Euler Method

Exercise 1

Make a list of all possible sources of inaccuracy in the solution that we just saw.

With the Euler method, we are always making the approximation:

$$
\int^{t+h} f(x(\tau)) d \tau \approx x(t)+h f(x(t))
$$

So the error added in each step is given by

$$
\int_{t}^{t+h}\left(f(x(\tau))-f(x(t)) d \tau \approx \frac{d f}{d x}(x(t)) f(x(t)) h^{2} / 2\right.
$$

So the fraction of each step that is error is

$$
\frac{\int_{t}^{t+h}(f(x(\tau))-f(x(t)) d \tau}{\int_{t}^{t+h} f(x(\tau)) d \tau} \approx \frac{h}{2} \frac{d f}{d x}(x(t))
$$

For a 1% error, we want to keep this to less that .01 .

Exercise 2

Select a good step size h to obtain an accuracy of 1% in the solution to the differential equation:

$$
\dot{x}=-2 \sin (x)
$$

Recall: Error fraction is $\frac{h}{2} \frac{d f}{d x}(x(t))$

Solution

Fractional error per step (want .01)

$$
\mid \text { error } \left.\left|\leq \frac{h}{2}\right|-2 \cos (x) \right\rvert\, \leq h
$$

Take $\quad h=.01$

Graph of Error

Note how the percent error increases.

Underflow

Computer arithmetic (floating point) is always approximate. If a very small number ε is added to one on the computer, the result will again be 1 , instead of $1+\varepsilon$. This is called an underflow. Underflow errors often occur when adding up a large number of floating point numbers.

