Computational Skills Assignments

Class 1:

Possible Preclass assignments. (Recommend assigning one)

1. Sketch the function $f(t)=u(t-1) e^{-(t-1)^{2}}$ for $0<\mathrm{t}<3$, where $\mathrm{u}(\mathrm{t})$ is the unit step function,
$\mathrm{u}(\mathrm{t})=0$ for $\mathrm{t}<0$, and $\mathrm{u}(\mathrm{t})=1$ otherwise.
2. Sketch the functions:
a. $u(t-1), 0<t<3$, where $u(t)$ is the unit step function, $u(t)=0$ for $t<0$, and $\mathrm{u}(\mathrm{t})=1$ otherwise.
b. $f(t)=e^{-(t-1)^{2}}$, for $0<\mathrm{t}<3$.
c. $f(t)=u(t-1) e^{-(t-1)^{2}}$, for $0<\mathrm{t}<3$.
3. Sketch the functions below for $0<\mathrm{t}<3$:
a. $f(t)=t^{2}$ for $1 \leq t \leq 2, f(t)=0$, otherwise.
b. $g(t)=e^{-f(t)}, f(t)$ from part a.

Postclass assignments. (Recommend assigning two of these.)
Numerical Integration:

1. Calculate the integral of the function $f(t)=t \sin (t)$ over the interval $0<t<2$.
2. Calculate the integral of the function $f(t)=t /(1+t)$.
3. A free rolling toy car on a flat surface moves with velocity $v(t)=\exp (-2 t)$. Compute how far the car has moved in 2 seconds using numerical integration.
4. Water enters a reservoir at a flow rate of $q_{i n}(t)=1000\left(1-e^{-t}\right)$, and flows out at a rate of $q_{\text {out }}(t)=1000 \frac{t}{1+t}$ cubic feet per second. If the reservoir contains 200,000 cubic feet of water at time $t=0$, use numerical integration to determine how much water is in the reservoir after 5 seconds.

Online Help

1. Using online help, write one or two sentence descriptions of the functions
a. hold
b. sum
c. mean
d. ones

Class 2:

$\underline{\text { Postclass assignment }}$

1. You are given a 1024 by 1024 grayscale image, represented as a matrix, where each element is an integer from 0 to 255,0 being white and 255 being black. You should write a program which will produce a 256 element array, indicating how many pixels are at each level. Then use the Matlab function bar to produce a bar chart, where the height of each bar indicates the number of pixels at that grayscale.
2. Write a step-by-step procedure for getting a glass of water to drink.

Class 3:

Postclass assignment

1. Write a Matlab function to simulate the solution to the differential equation

$$
\dot{x}=-x^{3}+1
$$

for $0<\mathrm{t}<4, \mathrm{x}(0)=0$. Also plot $\mathrm{x}(\mathrm{t})$ versus t and provide a suitable title and x and y axis labels.
2. Write a Matlab function to simulate the solution to the differential equation

$$
\dot{x}=-x(x-1)^{2}
$$

for $0<t<4$. Simulate the solution for $x(0)=.5$ and $x(0)=2$. In both cases, plot $\mathrm{x}(\mathrm{t})$ versus t , and provide a suitable title and x and y axis labels.

