
Session 

SOFTWARE ENGINEERING BACCALAUREATE PROGRAMS 
IN THE UNITED STATES: AN OVERVIEW 

 
Donald J. Bagert1 and Mark A. Ardis2

 
 

                                                           
1 Donald J. Bagert, Rose-Hulman Institute of Technology, Computer Science & Software Engineering, Terre Haute IN 47803 Don.Bagert@rose-hulman.edu 
2 Mark A. Ardis, Rose-Hulman Institute of Technology, Computer Science & Software Engineering, Terre Haute IN 47803 Mark.Ardis@rose-hulman.edu 

Abstract - There are currently over 20 Bachelor of Science 
in Software Engineering degree programs in the United 
States.  The first accredited software engineering programs 
in the U.S. are likely in the 2002-03 cycle, and it is expected 
that the total number of such programs will continue to see 
steady growth for several years to come.  The authors have 
provided a comparison of programs in order to determine 
what trends are emerging, which will benefit both current 
software engineering undergraduate programs, as well as 
those institutions which are thinking of creating new degrees 
of this type.  The curriculum content of these programs are 
broken down by subject area and compared with curriculum 
models and accreditation criteria.  The results of a survey of 
undergraduate software engineering programs worldwide 
that was conducted by the authors is used both to provide 
additional data about the U.S. programs and to compare 
them as a group to their counterparts in other countries.  
 
Index Terms – Accreditation guidelines, Curriculum issues, 
Software engineering, Undergraduate degree programs 

INTRODUCTION 

Although Master’s degree programs in Software 
Engineering (SE) have existed in the United States since the 
late 1970’s, and baccalaureate SE programs have existed 
internationally for about fifteen years, undergraduate 
programs of this type in the U.S. have been a more recent 
phenomenon [4].  The first school in the United States to 
offer a Bachelor of Science in Software Engineering (BSSE) 
was the Rochester Institute of Technology in 1996.  The 
Working Group on Software Engineering Education and 
Training (WGSEET), who is maintaining a list of existing 
SE Bachelor’s degree programs worldwide, has identified 21 
such programs in the U.S. existing at the beginning of the 
2002-03 academic year, with at least two (at Butler and 
Rose-Hulman) approved for 2003-04 and several more being 
proposed for some time in the near future. 

The number of SE undergraduate programs in the 
United States is now enough to begin examining them in 
order to 1) determine what trends are emerging and 2) see 
how they compare to their more established counterparts 
from other countries.  The authors have analyzed these 
programs using two different sources:   
• Details of the curricula for the U.S. programs, using 

information provided at the websites of the respective 
institutions, and  

• A survey requesting additional information, created by 
the authors and sent to all of the programs on the 
WGSEET list. 
 

The following sections provide: 
• A general profile of the U.S. programs, 
• A comparison of these programs with curriculum 

models, accreditation criteria, and graduate programs, 
• The results of the aforementioned survey of Bachelor’s 

degree programs worldwide, 
• An analysis of the profile and survey results, and 
• A summary of the findings.  

PROFILE OF SE DEGREE PROGRAMS 

Of the 21 U.S. institutions in the WGSEET list of software 
engineering Bachelor’s degree programs, the authors were 
able to find detailed information on 18 of those programs.  
Table I contains the list of those 18 schools along with the 
URL containing the software engineering curriculum 
description for each institution. 
 These schools represent a wide range of institutions.  
About one-third are public schools, two of them being the 
flagship school of their respective states.  Five of them (plus 
Rose-Hulman) are members of the Association of 
Independent Technological Universities (AITU), an 18-
member group which also includes MIT, Carnegie Mellon 
and Cal Tech among their number. 
 All but one of the programs studied have “Bachelor of 
Science in Software Engineering” as the name of its degree.   
Three of the 18 institutions do not offer a computer science 
degree, and one other is phasing it out for the SE program.   

Academic Colleges and Departments 

A breakdown of SE programs by school/college showed that 
• 11 are housed in the same school as the traditional 

engineering degrees (e.g. mechanical engineering); 
• 2 institutions are not split into separate schools, but 

offered traditional engineering degrees; 
• 3 programs are part of a separate school of computing or 

information systems, and 
• 2 are part of a school of sciences. 
 
So there is a strong tendency to align with traditional 
engineering programs, although a few institutions are seeing 
computing as a peer of engineering at the college level.  

0-7803-7444-4/03/$17.00 © 2003 IEEE November 5-8, 2003, Boulder, CO 
33rd ASEE/IEEE Frontiers in Education Conference 

1 



Session 

TABLE I 
INSTITUTIONS OFFERING BACHELOR’S PROGRAMS IN SOFTWARE ENGINEERING, WITH THEIR CURRICULUM PAGES 

School URL 
Auburn University 
Capitol College 
Champlain College 
Clarkson University 
Cogswell Polytechnical College  
Drexel University 
Embry-Riddle Aeronautical University 
Fairfield University 
Milwaukee School of Engineering  
Mississippi State University 
Missouri Tech 
Monmouth University 
Montana Tech  
Penn State University - Erie 
Rochester Institute of Technology  
Southern Polytechnic State University 
University of Michigan-Dearborn  
University of Wisconsin-Platteville 

http://www.eng.auburn.edu/csse 
http://www.capitol-college.edu/academics/ugrad/degrees/sebs.html 
http://www.champlain.edu/majors/softwareeng 
http://www.clarkson.edu/software_engineering 
http://www.cogswell.edu/software.html 
http://www.drexel.edu/ecm/ugsite/undergrad/ugacad.html 
http://www.erau.edu/0Universe/01/01b-softwareengineering.html 
http://www.ffldusoe.edu/bsse.html 
http://www.msoe.edu/eecs/se/ 
http://www.cs.msstate.edu/~dampier/bsse/ 
http://www.motech.edu/Catalog/19.asp 
http://bluehawk.monmouth.edu/~se/ 
http://www.mtech.edu/admission/programs.cfm?Program_ID='BSSE' 
http://www.pserie.psu.edu/academic/engineering/degrees/ece/se-index.htm 
http://www.se.rit.edu/degrees.php 
http://cs.spsu.edu/csdept/Software%20Engineering%20Main%20Page.htm 
http://www.engin.umd.umich.edu/CIS 
http://www.uwplatt.edu/~csse 

 
Only one of the institutions studied had no traditional 
engineering programs. 
 Twelve of the 18 programs are housed in academic 
departments, with the rest being in college/schools that 
separately administer each program in lieu of departments.  
Of those 12 programs: 
• 5 are in the same department as computer science, 
• 3 are with electrical and computer engineering, 
• 1 is jointly administered by electrical engineering and 

computer science, and 
• 3 are in separate software engineering departments.  
 
So there is currently no consensus as to which department 
should administer software engineering programs. 

Curriculum Content 

The courses in the various software engineering curricula 
can be broken down into the following areas: computer 
science, software engineering, mathematics, traditional 
engineering, and other courses. 
 As far as computer science courses are concerned, the 
schools showed a number of similarities to each other as 
well as to their respective computer science degrees.  All of 
the programs include a sequence of 2 or 3 introductory 
computer science courses that teach programming skills, and 
a computer organization/assembly language course of some 
sort.  More than half of the curricula also offered courses in 
operating systems, programming language concepts, 
database systems and networks. 
 The total number of software engineering courses varies 
across programs from 2 to 10, with an average of 6 per 
program.  All of the programs require a one or two term 
capstone experience (“senior project”) where students work 
in teams in order to develop a software project.  More than 
half of the schools have as their first software engineering 
course(s) a one or two-term sequence that covers a broad 

spectrum of software engineering topics. Almost all of the 
programs also have at least one software engineering course 
focusing on a specific topic.  Most of the schools offered at 
least one course in software architecture or design, reflecting 
the design content traditionally seen in engineering 
curricula. 
 Less than half of the programs had courses devoted 
specifically to Project Management (7 programs), Quality 
Assurance (7 programs), or Software Requirements (6 
programs). The other programs presumably cover these 
topics in overview software engineering courses.  Courses in 
ethics, human-computer interface, and formal methods in 
software engineering are offered by about a third of the 
programs. 
 Each of the programs studied include the standard 
calculus sequence.  All but two require probability and/or 
statistics, and all except one program require one discrete 
mathematics course.  (The other program requires 2 discrete 
math courses.)  About half of those discrete math courses are 
offered by the math department, while the others list it as a 
computer science course.  Almost half of the programs 
require differential equations, a similar number require 
linear algebra, and two give an option of one or the other.  
Thus, the mathematics requirements of software engineering 
programs are similar to that seen in computer science 
curricula, and are slightly different in content to traditional 
engineering program (although the total number of 
mathematics classes are about the same). 
 Most of the U.S. software engineering programs require 
little in the way of traditional engineering courses, with the 
main exception being digital logic, which is required in nine 
of the degree plans.  Besides circuits and engineering 
economics (3 each), no other (non-SE) engineering course is 
required by more than one program. 
 All of the programs include general education content 
required by their particular institution, including basic 
science and humanities.  Many of the degree plans also 

0-7803-7444-4/03/$17.00 © 2003 IEEE November 5-8, 2003, Boulder, CO 
33rd ASEE/IEEE Frontiers in Education Conference 

2 



Session 

required the student to take three or more courses in a 
particular application domain area; these courses are 
intended to provide a background in that domain sufficient 
to develop software applications in that area upon 
graduation.  Some of the institutions require a particular 
application domain (e.g. Mississippi State requires one in 
computer security), while others (such as the Milwaukee 
School of Engineering) allow the student to choose among 
one of several possible domain areas. 

SE ACCREDITATION CRITERIA 

In the late 1990’s, the Accreditation Board for Engineering 
and Technology (ABET), which accredits engineering, 
computing and technology programs in the United States, 
approved criteria for accrediting software engineering under 
the Engineering Accreditation Commission (EAC).  The first 
undergraduate software engineering programs were 
considered in the 2002-03 accreditation cycle; at least four 
schools (all included in this study) have publicly stated that 
they were visited by ABET in the fall of 2002. The 
ABET/EAC criteria [1] contains eight general criteria, of 
which Criterion 4 (Professional Component) and Criterion 8 
(Program Criteria) specific address requirements for specific 
curriculum content. 
 Criterion 4 states “Students must be prepared for 
engineering practice through the curriculum culminating in a 
major design experience based on the knowledge and skills 
acquired in earlier course work…”  As stated in the previous 
section, all of the programs studied include such a project.  
This criterion goes on to state that “The professional 
component must include: (a) one year of a combination of 
college level mathematics and basic sciences (some with 
experimental experience) appropriate to the discipline; (b) 
one and one-half years of engineering topics, consisting of 
engineering sciences and engineering design appropriate to 
the student's field of study and (c) a general education 
component that complements the technical content of the 
curriculum and is consistent with the program and institution 
objectives.”  In general, the 18 programs included in this 
study are following these guidelines. 
 Criterion 8 specifies criteria for each individual 
discipline.  The curriculum section of the software 
engineering criteria states that “The curriculum must provide 
both breadth and depth across the range of engineering and 
computer science topics implied by the title and objectives 
of the program.  The program must demonstrate that 
graduates have: the ability to analyze, design, verify, 
validate, implement, apply, and maintain software systems; 
the ability to appropriately apply discrete mathematics, 
probability and statistics, and relevant topics in computer 
science and supporting disciplines to complex software 
systems; and the ability to work in one or more significant 
application domains.”  As stated in the previous section, the 
software engineering content of the various programs vary 
widely, all provide a foundation in computer science, all 

require discrete mathematics, almost all require probability 
and statistics, and several programs require specific 
application domains. 

SE CURRICULUM MODELS  

In the late 1990’s, WGSEET developed the Guidelines for 
Software Engineering Education [3], which subsequently 
became the de facto source for undergraduate software 
engineering curriculum models.  All of the places where the 
software engineering programs were in general agreement 
(e.g. computer science introductory programming sequence, 
introductory SE course, capstone senior project, calculus, 
and discrete mathematics) are also contained in the 
Guidelines, while the programs vary in applying the 
remainder of the report’s recommendations. 
 A current effort by the ACM/IEEE-CS joint Computing 
Curricula-Software Engineering (CCSE) project is intended 
to provide detailed undergraduate software engineering 
curriculum guidelines which could serve as a model for 
higher education institutions across the world.  The first 
major component of this project has been the development 
of Software Engineering Education Knowledge (SEEK) [6], 
a collection of topics considered important in the education 
of software engineering students.  SEEK was created and 
reviewed by volunteers in the software engineering 
education community. The SEEK body is a three-level 
hierarchy, initially divided into knowledge areas (KAs), as 
described in Table II.  Those KAs are then further divided 
into units, and finally, those units are divided into topics.  
For example, REQ.ma.8 is a specific topic (modeling 
embedded systems) in the Modeling and Analysis (ma) unit 
of the Requirements knowledge area. 
 Each topic in SEEK is also categorized for its 
importance: Essential, Desired, or Optional. Essential topics 
are also annotated with indicators from Bloom's Taxonomy 
in the Cognitive Domain [5] to show the level of mastery 
expected. SEEK only uses three of the six Bloom Taxonomy 
values: knowledge, comprehension, and application. 

COMPARISON WITH GRADUATE PROGRAMS 

Master of Software Engineering (MSE) programs have been 
in existence longer than undergraduate programs. There are 
more than 25 of these programs in the U.S.  Many of these 
programs resemble the model introduced by the Software 
Engineering Institute (SEI) in 1989 [2], which prescribed:  
• 6 core courses in software engineering: 

o Specification of Software,  
o Software Verification and Validation 
o Software Generation and Maintenance 
o Principles and Applications of Software Design 
o Software Systems Engineering 
o Software Project Management 

• 4 technical electives 
• 2 semesters of project work 

0-7803-7444-4/03/$17.00 © 2003 IEEE November 5-8, 2003, Boulder, CO 
33rd ASEE/IEEE Frontiers in Education Conference 

3 



Session 

TABLE II 
SEEK KNOWLEDGE AREAS (FROM [6]) 

Knowledge Area Description 
Fundamentals (FND) 
 
Professional Practice (PRF) 
 
Requirements (REQ) 
 
Design (DES) 
 
 
Construction (CON) 
 
Verification & Validation (VAV) 
 
Evolution (EVO) 
 
Process (PRO) 
 
 
Quality (QUA) 
 
Management (MGT) 

Theoretical and scientific underpinnings, mathematical foundations to model and facilitate reasoning, and first principles 
that produce predictable results. 
Knowledge, skills, and attitudes to practice software engineering in a professional, responsible, and ethical manner; 
including technical communication, group dynamics, and professional responsibilities. 
Analysis of feasibility, elicitation and analysis of stakeholders' needs, creation of a precise description of the system, and 
validation by the stakeholders. 
Issues, techniques, strategies, representations, and patterns used to determine how to implement a component or a 
system. Includes specification of internal interfaces, architectural design, data design, user interface design, design tools, 
and evaluation of design. 
Development of software components, including translation of a design into an implementation language, development 
and execution of component tests, and development and use of program documentation. 
Static and dynamic system checking to ensure that the resulting system satisfies its specification and meets the 
expectations of the stakeholders. 
Supporting the stakeholders' mission in the face of changing assumptions, problems, requirements, architectures and 
technologies; including activities before and after each release. 
Commonly used software life-cycle process models; definition, implementation, measurement, management, change and 
improvement of software processes; use of a defined process to perform the technical and managerial activities needed 
for software development and maintenance. 
Quality of products and of processes used to develop them. Includes usability, reliability, safety, security, 
maintainability, flexibility, efficiency, performance and availability. 
Planning, organization, and monitoring of all software life cycle phases. 

 
It is possible to complete this program in one year of full-
time work, but many of the students who study in MSE 
programs do it part-time while they work in software jobs. 
 Some of the BSSE programs studied resemble these 
MSE programs, but most do not. In particular, many 
undergraduate programs include an overview software 
engineering course, while very few of the MSE programs 
include one. This may reflect the difference in maturity of 
the students: MSE students are often already familiar with 
general software engineering concepts through their jobs, 
while undergraduates have not had that experience. 
 Another difference is the number of courses devoted to 
specific software engineering topics. For example, almost all 
MSE programs have a course on project management, but 
only 7 of the 18 U.S. BSSE programs studied have such a 
course. Although MSE programs package their material 
differently form BSSE programs, both types of programs 
cover roughly the same material. 
 One area of commonality between undergraduate and 
graduate programs is in project work. Both types of 
programs have a capstone project involving student teams 
working for a client, usually spanning one academic year.  

SURVEY RESULTS 

In early 2003, the authors conducted a worldwide survey of 
leaders of institutions with baccalaureate software 
engineering programs.  There were 17 responses to the 
survey: 9 from the U.S., 4 from Australia, 2 from Canada, 1 
from Ireland and 1 from New Zealand. Table III summarizes 
the survey results. 
 Those surveyed were asked how many graduates each 
program had, and if there were no graduates yet, when they 
were expected. Most U.S. programs have not graduated any 
students yet, but all of those responding to the survey hope 

to do so by 2004.  The non-U.S. programs surveyed have 
produced almost 500 graduates so far. 
 The survey then asked about graduation class size and 
number of faculty teaching core courses. U.S. programs 
seem on average to have a smaller number of students, 
though the maximum was the same for U.S. and non-U.S. 
(100). The question about faculty size was not interpreted 
consistently by all respondents, but most U.S. programs have 
a relatively small number of faculty (mean of 6). 
 Almost all programs have a capstone project that spans 
one academic year. Clients for those projects may come 
from on-campus or off, with no clear preference. Only about 
half of the programs received contributions from their off-
campus clients. 
 There was also a question concerning accreditation 
plans. All programs responding either are accredited or 
expect to seek accreditation; the U.S. responses all identified 
ABET as the accreditation agency.  All non-U.S. programs 
surveyed have at least provisional accreditation. 
 Finally, the survey asked about coverage of topics 
identified by CCSE in the SEEK second draft [6]; there were 
nine responses pertaining to this area.  As would be 
expected, most programs cover most, if not all, of the topics; 
however, no topic was mentioned (that is, was listed as not 
covered) by more than five programs. 
 Table IV lists all of the SEEK topics that were 
mentioned by at least three programs. One interesting pattern 
to observe is the lack of coverage of Evolution (EVO) 
topics. Another pattern is the absence of any essential topics 
at the application level of mastery was greater than 
comprehension. Finally, none of the Management or 
Professional Practice topics were mentioned more than 
twice; meaning that topics in those areas are covered in less 
detail and with less uniformity than many of the other topics. 

0-7803-7444-4/03/$17.00 © 2003 IEEE November 5-8, 2003, Boulder, CO 
33rd ASEE/IEEE Frontiers in Education Conference 

4 



Session 

TABLE III 
SURVEY RESPONSES 

Question U.S. Responses Non-U.S. Responses 
1. How many students have completed your program? 
 
2. If no students have completed, when do you expect the 
first students to finish? 
 
 
3. How many students do you expect to graduate per year 
when you reach a steady state? 
 
 
4. How many full-time equivalent faculty teach the core 
courses in your curriculum? 
 
 
5. If your program has a capstone project experience, how 
long does it last? 
 
 
6. If your program has a capstone project experience, do the 
clients for those projects come from on-campus or off-
campus? 
 
7. If you have off-campus clients for projects, do they 
contribute any   funds or equipment to your department or 
school? 
 
8. Do you expect to seek accreditation for your program? If 
so, when and by what agency? 

3 programs have a total of 20 graduates 
 
4 in 2003 
1 in 2004 
1 in 2006 
 
Low = 10 
High = 100 
Mean = 30 
 
Low* = 3 
High** = 15 
Mean = 6 
 
whole academic year: 12, 
2 quarters: 2, 
1 semester: 1 
 
off-campus: 2 
both: 6 
 
 
yes: 4 
no: 4 
 
 
All programs interested in accreditation by ABET, 
2 have already been visited, rest will seek by 2006 

6 out of 7 have a total of 476 graduates 
 
1 in 2003 
 
 
 
Low = 15 
High = 100 
Mean = 50 
 
Not applicable -- many schools have 
faculty that teach across many 
disciplines 
 
whole academic year: 7 
 
 
 
on-campus: 2 
 
 
 
both: 6 
yes: 2 
no: 5 
 
All have at least provisional 
accreditation 

* Excludes one school that is just getting started 
** May include most CS faculty 
 

TABLE IV 
SEEK TOPICS NOT COVERED IN PROGRAMS AS REPORTED IN SURVEY  

Topic Description Bloom 
Level 

Importance Programs 
Without 

CON.fm.1 
CON.fm.6 
CON.fm.7 
DES.hci.10 
DES.str.4 
EVO.ac.1 
EVO.ac.2 
EVO.ac.3 
EVO.ac.6 
EVO.ac.7 
EVO.ac.8 
EVO.pro.4 
FND.ef.1 
 
FND.ef.6 
 
FND.md.4 
PRO.imp.7 
QUA.pda.3 
QUA.pro.4 
QUA.pro.6 
QUA.pro.7 
QUA.std.4 
REQ.ma.8 
VAV.hct.5 
VAV.hct.6 
VAV.tst.12 

Application of abstract machines (e.g. SDL, Paisley, etc.) 
Mapping of a specification to different implementations 
Refinement 
Psychology of HCI 
Aspect oriented design 
Working with legacy systems (e.g. use of wrappers, etc.) 
Program comprehension and reverse engineering 
System and process re-engineering (technical and business) 
Refactoring 
Program transformation 
Data reverse engineering 
Cost models of evolution 
Empirical methods and experimental techniques (computer-related measuring techniques for CPU and 
memory usage) 
Engineering science for other engineering disciplines (strength of materials, digital system principles, 
logic design, fundamentals of thermodynamics, etc.) 
Model checking and development tools 
ISO/IEEE Standard 12207: requirements of processes 
Quality product models 
Quality-related process areas of ISO 15504 
The Baldridge Award criteria for software engineering 
Quality aspects of other process models 
IEEE software quality-related standards 
Modeling embedded systems (e.g. real-time schedulability analysis, external interface analysis, etc.) 
Web usability; testing techniques for web sites 
Formal experiments to test hypotheses about specific HCI controls 
Deployment process 

k 
k 
c 
 
 
k 
k 
k 
k 
 
 
 
c 
 
 
 
k 
k 
k 
k 
 
 
 
 
c 

E 
E 
E 
D 
O 
E 
E 
E 
E 
D 
D 
D 
E 
 

O 
 

E 
E 
E 
E 
O 
O 
D 
D 
E 
D 
D 

3 
4 
3 
3 
4 
3 
3 
3 
3 
5 
5 
3 
3 
 

3 
 

3 
3 
3 
3 
5 
3 
3 
3 
3 
5 
4 

 

0-7803-7444-4/03/$17.00 © 2003 IEEE November 5-8, 2003, Boulder, CO 
33rd ASEE/IEEE Frontiers in Education Conference 

5 



Session 

ANALYSIS 

From the profile of the eighteen U.S. undergraduate software 
engineering programs, it is apparent that many of them are 
greatly influenced by their computer science counterparts.  
For example, the math, lab science and computer science 
requirements of the BSSE program are very similar to those 
of a typical CS curriculum.  The fact that almost all of the 
software engineering programs contain an introductory 
survey course in SE is also consistent with CS programs.  
This is unlike most other engineering disciplines, which do 
not have such a survey course.  (However, the new BSSE 
program at Rose-Hulman will not have an introductory SE 
course, but will instead have a set of six core SE courses 
which will play a role similar to the core of the SEI graduate 
curriculum model.  The Rose-Hulman core courses will 
build upon a three-course introductory CS sequence which 
embeds elementary software engineering concepts as 
appropriate throughout its study of programming, data 
structures, and algorithms.) 
 The influence of other degree programs in other 
engineering disciplines (as well as the ABET/EAC criteria) 
is also evident, through the inclusion of capstone projects 
and design courses.  However, there are also differences e.g. 
the aforementioned introductory SE course (which may be 
phased out over time) and use of computer science classes in 
lieu for the most part of (other) courses in the engineering 
sciences.  (The latter is to be expected, due to the non-
physical nature of software.) 
 Software engineering is unique due to its breadth, both 
of application areas and of phases of the product life cycle 
for which its practitioners are responsible (architecture, 
construction and maintenance as well as design).  The 
former is reflected by the inclusion of application domain 
areas in most of the U.S. baccalaureate SE programs and in 
the ABET/EAC criteria for software engineering, while the 
latter is present in the various SE curriculum models.  The 
fact that there is not much of a consensus as to what SE 
knowledge areas should be covered is in part due to the lack 
of an ACM or IEEE-CS model, which will soon be rectified 
when their joint CCSE project reaches completion.  The 
need for textbooks in order to teach various SE topics is 
another factor which will influence more uniformity in 
classes across undergraduate curricula in the future. 

SUMMARY 

This paper contains the results of a profile of existing U.S.  
undergraduate degree programs in software engineering.  
These programs were compared with their counterparts in 
other countries and with graduate level software engineering 
programs.  Also, the results of a worldwide survey of leaders 
of baccalaureate SE programs were provided.  Finally, an 
analysis of the results was presented. 
 BSSE programs are a new, but growing phenomenon in 
the U.S. Most seek accreditation by ABET and have paid 

careful attention to curriculum recommendations, such as the 
Guidelines for Software Engineering Education and a draft 
of the Software Engineering Education Knowledge artifact 
currently under development. 
 BSSE programs share much in common with 
undergraduate programs in computer science, including 
common foundation computer science and mathematics 
courses. Although BSSE programs cover the same material 
as MSE programs, it is packaged a little differently in 
courses. In particular, many BSSE programs contain an 
overview software engineering course, while MSE programs 
usually do not. 

ACKNOWLEDGMENT 

The authors appreciate the help of Joseph Clifton of the 
University of Wisconsin-Platteville and Stephen Frezza of 
Gannon University, who maintain the WGSEET list of 
software engineering undergraduate programs, and to the 
survey respondents. 

REFERENCES 
[1] Accreditation Board for Engineering and Technology, Inc., Criteria 

for Evaluating Engineering Programs, 3 November 2001. 

[2] Ardis, Mark and Ford, Gary, 1989 SEI Report on Graduate Software 
Engineering Education, Carnegie Mellon TR CMU/SEI-89-TR-21, 
June 1989. 

[3] Bagert, Donald J.; Hilburn, Thomas B.; Hislop, Greg; Lutz, Michael; 
McCracken, Michael and Mengel, Susan., Guidelines for Software 
Engineering Education Version 1.0, Technical Report CMU/SEI-99-
TR-032, Software Engineering Institute, Carnegie Mellon University, 
Pittsburgh PA, October 1999. 

[4] Bagert, Donald J., “Education and training in software engineering”,  
Encyclopedia of Software Engineering, Second Edition, John Wiley 
and Sons, 2002, pp. 452-465. 

[5] Bloom, Benjamin J. et al. (eds.), Taxonomy of Educational Objectives: 
Handbook I: Cognitive Domain, first edition, David McKay Co., New 
York NY, 1956. 

[6] Sobel, Ann E.K. (ed.), Second Draft of the Software Engineering 
Education Knowledge, December 6, 2002. 

 <http://sites.computer.org/ccse/know/SecondDraft.pdf> 

0-7803-7444-4/03/$17.00 © 2003 IEEE November 5-8, 2003, Boulder, CO 
33rd ASEE/IEEE Frontiers in Education Conference 

6 


	Acknowledgment

