
Appendix A

VECTORS, TENSORS AND
MATRIX NOTATION

The objective of this section is to review some of the vector operations that you have already covered
in your MATH and ENGR courses. For more details and examples you should refer to your calculus
text under the chapters on vectors and vector calculus.

The following notes will be divided into two parts. The first will review the theory, while the
second part will review how to perform various vector operations in Scientific Workplace. These
calculations will be illustrated in Cartesian rectangular and cylindrical coordinates. First you will
learn the basic operations, then you will be shown some examples, and finally you will work some
problems.

A.1 Review of Vector and Matrix Operations

In Engineering, we represent physical quantities using three different groups of mathematical ob-
jects, i.e., scalars, vectors and tensors. A scalar quantity is represented by a real number with some
appropriate units (mass, temperature, energy, time, etc.). A vector is an object that has a scalar
magnitude and a direction. A vector in three-dimensional space can be described as a linear com-
bination of three base vectors that have unit length and point in the positive direction of the three
axes; these form the so-called standard orthonormal basis. They are denoted i, j, and k and
point parallel to the x-, y-, and z-axes, respectively. Using them, we can write a three-space vector
a in the following form

a = a1i + a2j + a3k (A.1)

where a1, a2, a3 are the scalar components of the vector a with respect to the standard orthonormal
basis.

Note that in printed text, lower-case roman boldface letters are generally used to represent
vectors, and subscripted lower-case italic letters represent their components. In handwriting, the
vector a is often written as ā, �a or a

∼
.

A given vector a can be expressed in matrix form as a 3× 1 column matrix whose entries are the
components of the vector:

[a] =




a1

a2

a3


 (A.2)
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We normally think of a vector as a column matrix, but a vector may also be written in matrix
notation as a 1 × 3 row matrix:

[a] =
[

a1 a2 a3

]
(A.3)

Addition of vectors is defined component-wise by

(a + b)i = ai + bi for all i. (A.4)

Multiplication of a vector by a scalar is defined component-wise by

(ca)i = c · ai for all i. (A.5)

The difference a − b is simply a + (−1)b. Analogous definitions hold for general matrices.
The above definitions arise from their geometrical usefulness and from obvious analogy to oper-

ations on the real numbers. How to define a useful form of multiplication of one vector by another
is not so obvious. We define three products of vectors: the dot product (or scalar product), the
cross product (or vector product) and the dyadic product (or tensor product). All are products
of two vectors, but the products are scalar-, vector-, and tensor-valued.

The dot product a · b is given by

a · b = [a]T [b] =
[

a1 a2 a3

]



b1

b2

b3


 = a1b1 + a2b2 + a3b3, (A.6)

where [·]T denotes matrix transpose. The computation shown is actually only a mnemonic; the
right-hand side is more properly a 1 × 1 matrix, but we always interpret the result as a scalar, and
the ambiguity rarely causes us trouble. The definition extends to vectors of other dimensions.

The cross product a × b is the vector given by the following determinant:

a × b =

∣∣∣∣∣∣
i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
= i

∣∣∣∣
a2 a3

b2 b3

∣∣∣∣ − j
∣∣∣∣

a1 a3

b1 b3

∣∣∣∣ + k
∣∣∣∣

a1 a2

b1 b2

∣∣∣∣
= i(a2b3 − a3b2) − j(a1b3 − a3b1) + k(a1b2 − a2b1)

(A.7)

The result is a three-component vector. Note that the j-term is negated. Note also that a × b =
−b× a. The definition applies only to vectors in three-space. Finally, we define the dyadic product
a ⊗ b by

[a ⊗ b] ≡ [a] [b]T =




a1

a2

a3


 [

b1 b2 b3

]
=




a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3


 (A.8)

The result is a square matrix, also called a second-order tensor (often simply “tensor”) in me-
chanics contexts. Clearly, b ⊗ a = (a ⊗ b)T . Note that (a ⊗ b) c = a (b · c) for all vectors c. The
above observation allows us to define a (second-order) tensor to be a linear transformation that
maps vectors to vectors: if A denotes a tensor, then when A operates on a vector b it maps it to
another vector given by

Ab = [A] [b] =




A11 A12 A13

A21 A22 A23

A31 A32 A33







b1

b2

b3


 =




A11b1 + A12b2 + A13b3

A21b1 + A22b2 + A23b3

A31b1 + A32b2 + A33b3


 (A.9)

bA = [b]T [A] =
[

b1 b2 b3

]



A11 A12 A13

A21 A22 A23

A31 A32 A33


 (A.10)

=
[

A11b1 + A21b2 + A31b3 A12b1 + A22b2 + A32b3 A13b1 + A23b2 + A33b3

]
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Higher order tensors can be similarly defined; for example, a third-order tensor maps a vector to a
second-order tensor, etc.

After introducing the vector operations, one can easily introduce vector calculus by defining
the del operator, denoted by ∇. ∇ is a vector operator that “obeys” (in a mnemonic sense) the
multiplication rules for vectors and operates on the object that follows it. In Cartesian rectangular
coordinates ∇ is given by

∇ ≡ i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
. (A.11)

This is not a proper three-space vector (its components are differential operators, not real num-
bers), but the vector notation helps us easily write formulas for the vector and vector-valued deriva-
tives that we wish to define. The divergence of the vector-valued function v is denoted (∇ · v).
The curl of v is denoted ∇ × v. The gradient of the scalar function f is denoted ∇f . They are
defined as follows:

∇ · v =
[

∂
∂x

∂
∂y

∂
∂z

]



vx

vy

vz


 , ∇× v =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

vx vy vz

∣∣∣∣∣∣
, ∇f =




∂f
∂x
∂f
∂y
∂f
∂z


 . (A.12)

In each case, we define the operation by treating ∇ as a vector and computing the “product”
indicated by the notation: dot, cross, and scalar, respectively. Thus the results of these operations
are scalar, vector, and vector, respectively.

These definitions apply to vectors represented with rectangular coordinates. The mnemonic
formulas remain the same when we change coordinate systems, but the del operator changes. For
example in cylindrical coordinates ( r, θ, z ) the del operator is given by

∇ ≡ er
∂

∂r
+ eθ

1
r

∂

∂θ
+ ez

∂

∂z
(A.13)

where er is the unit vector in the direction of increasing r, eθ is the unit vector in the direction
of increasing θ, and ez is the unit vector in the direction of increasing z (this is the same as the
unit vector k). These three vectors form an orthonormal basis for the cylindrical coordinate system.
The vectors er and eθ are variable with respect to θ. Because of this, their derivatives must be
accounted for when the above differential operations are carried out. Try some examples with
Scientific Workplace to determine the difference in vector operations between Cartesian rectangular
and cylindrical or spherical coordinate systems.

A.2 Scientific Workplace Applications

Scientific Workplace can perform many time saving operations.
DOT PRODUCT
u = (1, x, y)
v = (1, 0, 0)
u · v = 1
CROSS PRODUCT
u = (1, 2, 3)
v = (2, 3, 4)
u × v = (−1, 2,−1)
SOLVING SYSTEMS OF EQUATIONS
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2x − 3y + 4z − 8u + 2v = −14
−x + 8y − 3z − u + 6v = 32
6x + 7y − 2z + u − v = 13
20x + 3y − 6z + 6u − 4v = 12
−x − 6y − 4z − 2u − v = −38

, Solution is : {x = 1, y = 2, z = 3, u = 4, v = 5}

This worksheet demonstrates how to compute gradient, divergence, and curl in rectangular co-
ordinate systems. For additional help, see Scientific Workplace’s help files.

GRADIENT
Gradient is defined as the del operator operating on a scalar field. Simply stated:

del f =<
∂

∂x
f,

∂

∂y
f,

∂

∂z
f > where f is a scalar field.

Gradient is a vector .

f(x, y, z) = 3x2 + 2yz

∇f(x, y, z) =
6x
2z
2y

DIVERGENCE
Divergence is the dot product of del and F where F is a vector field of the form:

F( x, y, z ) =< A( x, y, z ), B( x, y, z ), C( x, y, z ) >. Simply stated:

DivergenceF =<
∂

∂x
,

∂

∂y
,

∂

∂z
> · < A, B, C >

Divergence is a scalar field .

F(x, y, z) = (x, y2, z)
∇ · F(x, y, z) = 2 + 2y
CURL
Curl is the cross product of del and F where F is a vector field of the form:

F( x, y, z ) =< A( x, y, z ), B( x, y, z ), C( x, y, z ) >. Simply stated:

CurlF =<
∂

∂x
,

∂

∂y
,

∂

∂z
> × < A, B, C >

Curl is a vector field.

F(x, y, z) = (x2, xz, y2z)
∇× F(x, y, z) = (2yz − x, 0, z)

A.3 Questions

A.1 Describe in your own words the meaning of the dot product of two vectors.

A.2 Give the value (scalar, vector, or tensor) of each of the following products:

a. ∇ · v
b. ∇× v

c. ∇v

d. v · (∇v)

e. (v · ∇)v
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A.4 Problems

A.3 For the following vectors calculate |a|, a ·b, a×b and a⊗b. Show the calculations by writing
a and b in matrix form.

a) a = −3i + 4k b = 2i + 3j − 5k
b) a = 5i − j b = i + 3j − 2k
c) a = i + 3j + 6k b = 4i − 1j − 6k
d) a = 9i − 3j + k b = i + 3j − 9k
e) a = 5i + 3j − 2k b = 2i − j + 2k
f) a = 2xi + zk b = yzi − zj − xyk

g) a = −yzi + 2zj − 2zk b = 2xi − 3xyj + zk

h) a = −26er + 4eθ − 10ez b = 13er − 2eθ + 5ez

A.4 Consider the vectors a = 2i − 5j − 2k and b = i − 3j

a) Resolve a into two vectors: one in the direction of b and the other normal to b.

b) Sketch a, b and the two components of a found above.

c) Determine the dot product of the two components of a.

d) Find a vector c that is perpendicular to both a and b.

A.5 For the following questions use the vectors a = 7i+3j−2k, b = 2i+ j+3k, and c = i−4j+k.
Find:

a.) a · b
b.) b × c

c.) c ⊗ b

d.) a · (b × c)

e.) (a × c) × (b × c)

f.) a × (b + c)

g.) (a × c) + (b × c)

A.6 For the velocity vectors v1 = 3xyi − 2yj + xyzk, v2 = (x2 − 3x)i + (y3 + 2y − 7)j + zk and
v3 = (x22y2 − 5z)i + (y3 + 2z)j + (7yz)k, determine the following:

a) The divergence of v: ∇ · v
b) The curl of v: ∇× v

c) v · (∇v)

d) (v · ∇)v

A.7 For the vector-valued functions of position u and v (velocities) and for the scalar-valued
function of position ρ (density), prove the following identities. Use a rectangular coordinate
representation for ∇, u and v (e.g., u = uxi + uyj + uzk) to compute the expressions on each
side of each equation. Verify using Scientific Workplace.

a) ∇ · (ρv) = v · ∇ρ + ρ∇ · v
b) ∇× (ρv) = ∇ρ × v + ρ∇× v

c) ∇ · u × v) = (∇× u) · v − u · ∇ × v)

d) ∇ · (∇× u) = 0
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A.8 Show that ∇×∇Φ ≡ 0, where Φ is a scalar-valued function of position, i.e., Φ = Φ(x, y, z ).

A.9 Given the matrices:

[A] =




5 −3 4
6 2 −5
−6 3 4


 [B] =




2
−1
4


 [C] =

[
6 2 −3

]
[D] =




7
5
−3


 ,

evaluate the following:

(a) [B] + [D]

(b) [A][A]T

(c) [A][B]

(d) [C][A][B]

(e) [C][D]

(f) [D][C]

A.10 Given the following set of linear equations in matrix form, write the equations as three separate
equations.




5 −3 4
6 2 −5
−6 3 4







x1

x2

x3


 =




2
−1
4




A.11 Write the following linear algebraic equations in matrix form:

6C1 − 2C2 = 16
−2C1 + 4C2 + C3 = 5

C2 + 8C4 = −7

A.12 Solve for x from the set of equations



5 −3 4
6 2 −5
−6 3 4







x1

x2

x3


 =




2
−1
4





