
Chapter 13

STRESS AND DEFORMATION
ANALYSIS OF LINEAR
ELASTIC BEAMS IN BENDING

13.1 Introduction

In Chapters 11 and 12, the analysis of bars subjected to axial and torsional loads was considered.
In this chapter, we continue the study of long slender straight geometries but now consider loads
which cause bending of the beam, i.e., the loads are transverse to the length of beam and produce
transverse displacements and internal shear and moment. We will refer to structural members
that exhibit beam bending as beam or frame members. Some examples of frame structures where
beam bending is important are shown below. Typically, these transverse loads are due to design
loads that the structure must carry along the length of the member (for example, vehicle traffic
on a bridge, snow loads on a roof, lift force on an airplane wing) in addition to the weight of the
structural member itself. In some cases, the structure may look similar to truss structures that were
considered in ENGR 211 as shown below.

Figure 13.1: Examples of Frame Structures which Exhibit Beam Bending Behavior

However, unlike truss structures which were assumed to be pinned at their joints so that members
could carry no shear or bending moment (truss members are two-force members), frame structures
and frame members are typically rigidly attached at their end points to supports or other frame
members. When one frame member is rigidly attached to another at a joint, the members will
transfer axial and shear force as well as a bending moment to each other at the joint. In most
structural applications, the shear and bending loads occur in all three coordinate directions and
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produce deformation in all three coordinate directions. In this chapter, we will consider bending
only in a single plane.

Figure 13.2: Cantilever Beams; Manmade and Nature’s Own

Figure 13.3: Structural Members in a Fighter Aircraft

We will begin our study of beam bending by first considering the bending and shear stress
that results from the application of transverse loading, shear and bending moments (so-called pure
bending theory). Then we will consider the development of shear and bending moment diagrams
(the distribution of shear and bending moment along the length of a beam) and the mathemat-
ical relationships between internal shear, bending moment and the applied distributed transverse
load. Finally we will address the determination of the transverse displacement that occurs in beam
bending.

Note: In the development of a theory to analyze beams under bending, we may take either of
two approaches: phenomenological or theoretical (based on solution of the governing mathemati-
cal equations). The phenomenological approach means that we observe the phenomenon (usually
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the kinematics) in the laboratory, postulate appropriate assumptions for certain displacement, strain
and/or stress components based on these observations; and develop a theory based on these assump-
tions in concert with necessary theoretical requirements. The more theoretical approach starts with
the basic conservation laws (in this case, linear and angular momentum and possibly energy), the
kinematic equations (strain-displacement relations), the appropriate constitutive equations and the
appropriate boundary conditions; and solves these in more-or-less exact form. Since the conservation
laws are partial differential equations, this requires the solution of a system of partial differential
equations. Most of the early developments in beam bending theory by pioneers such Leonard Eu-
ler (1707-1783) and Jacob Bernoulli (1654-1705) were for the most part phenomenological. The
Euler-Bernoulli theory of bending will be discussed here. Later developments by Lagrange, Navier,
Cauchy, Green and Timoshenko (1878-1972), to name a few, followed more theoretical approaches
to mechanics. Students interested in further reading on the history of strength of materials (as
beam bending theory is often called) may wish to consult Timoshenko’s book (History of Strength
of Materials, S.P. Timoshenko, McGraw-Hill, New York, 1953).

13.2 Bending Stress and Deflection Equation

In this section, we consider the case of pure bending ; i.e., where only bending stresses exist as a result
of applied bending moments. To develop the theory, we will take the phenomenological approach to
develop what is called the “Euler-Bernoulli theory of beam bending .”

Geometry : Consider a long slender straight beam of length L and cross-sectional area A. We
assume the beam is prismatic or nearly so. The length dimension is large compared to the dimensions
of the cross-section. Schematically, a beam member shown below:
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Figure 13.4: Beam Geometry

While the cross-section may be any shape, we will assume that it is symmetric about the y axis.
Loading : For our purposes, we will consider shear forces or distributed loads that are applied in

the y direction only (on the surface of the beam) and moments about the z-axis. We have consider
examples of such loading in ENGR 211 previously and some examples are shown below:

Kinematic Observations: In order to obtain a “feel” for the kinematics (deformation) of a beam
subjected to pure bending loads, it is informative to conduct an experiment. Consider a rectangular
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Figure 13.5: Typical Loading on Beam

bar bent by end moments as shown below:
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Figure 13.6: Bending about the z-axis by End Moments

The following photograph shows a long beam with a square cross-section. Straight longitudinal
lines have been scribed on the beam’s surface, which are parallel to the top and bottom surfaces (and
thus parallel to a centroidally placed x-axis along the length of the beam). Lines are also scribed
around the circumference of the beam so that they are perpendicular to the longitudinals (these
circumferential lines form flat planes as shown). The longitudinal and circumferential lines form a
square grid on the surface.

The beam is now bent by moments at each end as shown in the lower photograph. After loading,
we note that the top line has stretched and the bottom line has shortened (implies that there is strain
εxx). If measured carefully, we see that the longitudinal line at the center has not changed length
(implies that εxx = 0 at y = 0). The longitudinal lines now appear to form concentric circular lines.
We also note that the vertical lines originally perpendicular to the longitudinal lines remain straight
and perpendicular to the longitudinal lines. If measured carefully, we will see that the vertical lines
remain approximately the same length (implies εyy = 0). Each of the vertical lines (as well as the
planes they form) has rotated and, if extended downward, they will pass through a common point
that forms the center of the concentric longitudinal lines (with some radius ρ). The flat planes
originally normal to the longitudinal axis remain essentially flat planes and remain normal to the
deformed longitudinal lines. The squares on the surface are now quadrilaterals and each appears
to have tension (or compression) stress in the longitudinal direction (since the horizontal lines of a
square have changed length). However, in pure bending we make the assumption that. If the x-axis
is along the length of beam and the y-axis is normal to the beam, this suggests that we have an axial
normal stress σxx that is tension above the x-axis and compression below the y-axis. The remaining
normal stresses σyy and σzz will generally be negligible for pure bending about the z-axis. For pure
bending, all shear stresses are assumed to be zero. Consequently, for pure bending, the stress matrix
reduces to:
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Figure 13.7: Experimental Demonstration of Kinematics in Beam Bending

[σ] =


 σxx 0 0

0 0 0
0 0 0


 (13.1)

Later, we will show that when a transverse shear is applied to the structure, shear stresses will
not be zero.

Shear and Moment Resultants: Consider a cross-section subjected to internal normal and shear
tractions, which can be written equivalently as normal and shear stresses. These tractions may be
resolved into axial force, shear and moment resultants. Consider a general distribution of normal
and shear stress on a cross-section as shown below and their equivalent resultant forces:

It should be noted that the stress distribution is applied over the cross-sectional area A but is
approximately uniform (constant) in the z direction (because there is bending only about the z-axis).
In order to define P , Vy and Mz, we require that they provide the same axial and shear force and
moment as the stress distribution, i.e., that forces and moments must be equivalent in both cases.
Consider the shear and normal stress applied over a small differential area of the cross-section as
shown below:
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Figure 13.8: Stress Distribution and Equivalent Axial Force, Shear and Moment Resultants on a
Cross Section
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Figure 13.9: Axial and Shear Stress on Beam Cross-Section

The resultant axial force P must be equal to the integral of axial stress σxx over the cross-section.
Likewise, the resultant shear force Vy in the y direction must be equal to the integral of shear stress
σxy, which is also directed in the y direction. The axial stress σxx (in Figure 13.9) produces a
moment about the z-axis that must be equivalent to the moment resultant Mz (in Figure 13.8).
Hence, we can write:

P =
∫
A

σxx dA

Vy =
∫
A

σxy dA (13.2)

Mz = −
∫
A

σxxy dA
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The minus sign is required to be consistent with the positive direction chosen for the moment Mz

about the z-axis in Figure 13.8 (note that Mz follows the right-hand rule since the moment vector
for Mz would be in the +z direction).

The force and moment resultants P , Vy and Mz are important because they allow us to work with
equivalent vector forces on the cross-section instead of dealing with the actual stress distribution.
For the pure bending case, we will only need the moment resultant; however, when shear loading is
considered, we will need the shear resultant as well.

Constitutive Relations: We assume the material is a homogeneous linear elastic isotropic solid
so that the constitutive relations reduce to:

σxx = Eεxx (13.3)

σxy =
E

1 + ν
εxy = Gγxy

Kinematic or Strain Displacement Equations: We assume small strain theory and write only the
axial strain component for the time being:

εxx =
∂ux

∂x
(13.4)

Kinematic Assumptions: From the previous discussion regarding experimentally observed behav-
ior of beam bending, we draw a sketch showing the beam before and after bending. After bending,
the transverse displacement of the centroidal x-axis will be defined by u0y(x) as shown below. The
subscript “0” means that uy is measured at y = 0 (i.e., at the centroidal axis position). If we assume
that there is no strain in the y direction (εyy = 0), then uy is not a function of y. Hence we can
write the transverse displacement of any point on the beam in terms of its centroidal value so that

uy(x, y ) = u0y(x) (13.5)

The rotation of the beam at any point x is given by the derivative of the transverse displacement
u0y with respect to x:

θ(x) =
du0y

dx
(13.6)

Since me make the assumption that a normal to the centroidal axis remains straight and normal,
then the normal will also rotate by this same amount θ. For a point “A” located at some position y
above the centroidal axis, we note that point A will have moved to the left as shown on the sketch.
This displacement in the x direction is the displacement ux( x, y ) and from the geometry can be
written as:

ux(x, y ) = −y tan−1 θ(x) ≈ −yθ(x) = −y
du0y(x)

dx
(13.7)

Equation (13.7) states that the axial displacement ux can be written entirely in terms of the
transverse displacement of the centroidal axis and that the displacement is linear with transverse
position y. Substituting equation (13.7) into (13.4), the axial strain can now be written as

εxx =
∂ux

∂x
=

∂
(
−y

du0y(x)
dx

)
∂x

= −y
d2u0y(x)

dx2
(13.8)
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Figure 13.10: Displacement and Rotation in Beam Bending

Note that equation (13.8) satisfies the assumptions that the axial strain at y = 0 (the centroidal
axis) is zero. Because the strain is zero along the x-axis passing through the centroid, it is sometimes
referred to as the neutral axis. We can now rewrite the internal bending moment in terms of
displacements by substituting the strain-displacement equation (13.8) into the stress-strain equation
(13.3) and that result into the moment equation (13.2) to obtain

Mz = −
∫
A

σxxy dA = −
∫
A

Eεxxy dA = −
∫
A

E

(
−y

d2u0y(x)
dx2

)
y dA (13.9)

Note that we must integrate over the cross-section, A which lies in the y-z plane. We now assume
that Young’s modulus E is a constant over the cross-section, i.e., E = E(x) and thus E may be
taken outside the integral. Since u0y(x) is not a function of y or z, it may also be taken outside the
integral. Hence, we write:

Mz = E
d2u0y(x)

dx2

∫
A

y2 dA (13.10)

The integral term is a geometrical property of the cross-section and can be easily integrated:

Izz =
∫
A

y2 dA (13.11)
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where Izz is called the moment of inertia of the cross-section about the z axis. As stated previously,
we have assumed that the cross-section is symmetric about the y axis. If the cross-section is not
symmetric about the y axis, a transverse load may produce twisting of the cross-section that we
have not considered here. Note that bending is occurring about the z axis since bending moments
are about the z axis. With this definition of the moment of inertia, equation (13.10) now becomes

Mz = EIzz
d2u0y(x)

dx2

or

d2u0y(x)
dx2

=
Mz

EIzz
(13.12)

Equation (13.12) is an ordinary second order differential equation that defines the transverse
displacement in terms of the bending moment. Since the bending moment Mz will in general be
a function of x, it will be necessary to determine this moment expression Mz(x) before equation
(13.12) can be integrated.

The stress may now be written in terms of the bending moment by substituting equation (13.12)
into the strain equation (13.8) and the result substituted into the stress equation (13.3) to obtain:

σxx = Eεxx = E

(
−y

d2u0y(x)
dx2

)
= E

(
−y

Mz

EIzz

)

or

σxx = −Mzy

Izz
(13.13)

Note that σxx = σxx(x, y ). Equation (13.13) shows that for any position x along the length
of the beam, the bending stress varies linearly with y (i.e., linearly from top to bottom surface of
the beam) and is zero at the centroidal axis. The linear variation of bending stress through the
cross-section is shown below.

Since the bending moment Mz = Mz(x), then the stress also varies with position along the
length of the beam. This moment distribution may be determined by using free-body diagrams to
be discussed below.

13.3 Review of Centroids and Moments of Inertia

Before we consider the application of beam bending theory developed up to this point, we note that
it is necessary to establish the location of the centroid for the cross section as well as the moment
of inertia about the bending axis. Consequently, we review these topics before going further.

Consider a composite cross-section consisting of two separate areas as shown below. We wish to
determine the location of the centroid of the cross-section.

Relative to some y′-z′ reference axes, define the centroid of the composite area to be ȳ, and the
centroid of each sub-area to be ȳi. We require the “first moment of the area” about the z′ axis in
terms of the discrete values ȳA to be equal to the integral value

∫
A

y′ dA so that we write:

ȳA =
∫
A

y′ dA → ȳ

n∑
i=1

Ai =
n∑

i=1

ȳiAi
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Figure 13.11: Internal Bending Stress Distribution for Beam Bending
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Figure 13.12: Sketch for Determining Location of Centroid

Solving for ȳ gives:

ȳ =

∫
A

y dA

A
=

n∑
i=1

ȳiAi

n∑
i=1

Ai

(13.14)
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The moment of inertia about the bending axis was given by equation (13.11). We can also
develop the parallel axis theorem (also called the transfer theorem) for moments of inertia. Suppose
that we know the moment of inertia of an area about its centroid and wish to determine the moment
of inertia about some other parallel axis. Consider the following sketch of a rectangular area (Note
a rectangular area is shown for simplicity; however, the area can be any shape.):

(centroid of A1)A1

d1

y

z

y
′

z
′y

′ − z
′
reference axis

Figure 13.13: Sketch for Developing Parallel Axis Theorem

Referring to the figure above, consider area A1. The moment of inertia of this area about the z′

axis is defined by

Iz′z′ =
∫
A1

(y′)2 dA

The y and y′ coordinates are related by the transformation y′ = y + d1. Substituting this into
the above gives

Iz′z′ =
∫
A1

(y′)2 dA =
∫
A1

(y + d1)2 dA =
∫
A1

y2 dA +
∫
A1

2yd1 dA +
∫
A1

(d1)2 dA

The first term on the right is the moment of inertia about the z-axis passing through the centroid
of area A1: Īzz1 ≡

∫
A1

y2 dA

The second term can be written as 2d1

∫
A1

y dA since d1 is a constant. However, the term
∫

A1

y dA =

0 since the y-z axes is located at the centroid of A1. The last term is simply (d1)2A1. Consequently
we can write

Iz′z′ = Īzz1 + A1d
2
1 (13.15)

This last result is called the parallel axis theorem or transfer theorem. It allows one to determine
the moment of inertia about a parallel axes (z′) in terms of moment of inertia about the centroidal
axis (z) and the distance between z and z′ (d1). Now consider a composite body made of n sub-areas
Ai such as that shown below:

The parallel axis theorem for a single area (13.15) can be generalized to obtain the following
expression for determining the moment of inertia about the centroidal axis of the composite body:
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Figure 13.14: Parallel Axis Theorem for Composite Body

Izz =
∫
A

y2 dA =
n∑

i=1

(Īzzi + Aid
2
i ) (13.16)

where

Izz = moment of inertia of body about its centroidal axis
Īzzi

= moment of inertia of area i about its centroidal axis
di = distance between centroid of area i and centroidal axis of body
Ai = area i

Example 13-1

Consider a cross-section of dimensions b and h as shown below. Determine the location of the
centroid and the moment of inertia about the z axis (located at the centroid).

By inspection the centroid is located at the center of the cross-section, i.e., h
2 from the top and

b
2 from the left edge.

Izz =
∫
A

y2 dA =
∫ h

2

−h
2

y2b dy = b

∫ h
2

−h
2

y2 dy =
bh3

12

In a similar fashion, the moment inertia about the y axis is given by:

Iyy =
∫
A

z2 dA =
∫ b

2

− b
2

z2h dz = h

∫ b
2

− b
2

z2 dz =
hb3

12
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Figure 13.15:

We note in passing that for a circular cross-section of diameter D, we find

Iyy = Izz =
πD4

64
and J = Iyy + Izz =

πD4

32

Example 13-2

Determine the centroid and moment of inertia of the following composite body.

80

10

10

30

40

A1

A2

y

z

z
′

c2

c1

c

all units are
in (mm)

z
′′

y, d1 = ?

d2 =?

Figure 13.16:

The centroid of the composite body is labeled “c”. The centroid of area 1 and 2 is labeled c1

and c2, respectively.
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Solution

By inspection, the horizontal location of the centroid of the composite body is 20 cm to the right

of the left edge of the lower area. To determine the vertical location, we use ȳ =

∑
i

Aiȳi∑
i

Ai
. Choose a

reference z′ axis to located at the centroid of the upper area. Then we write:

ȳ =

∑
i

ȳiAi∑
i

Ai
=

0(80 × 20) + (−40)(40 × 60)
(80 × 20) + (40 × 60)

= −24 mm

Hence the vertical position of the centroid for the composite body is located 24 mm below the
centroid of area 1, or 34 mm below the top of the body.

Now, we determine the moment of inertia about the centroidal axis of the composite body using
the parallel axis theorem. Knowing the location of the centroid, we know that d1 = 24 mm, d2 = −16
mm. We will determine the moment of inertia of each area separately and then sum them.

A1 → I
(1)
z′z′ = 1

12bh3 = 1
12 (80 × 203) = 53.3 × 103 [mm4]

I
(1)
zz = I

(1)
z′z′ + A1d

2
1 = 53, 300 + (80 × 20)(24)2 = 975, 000 [mm4]

A2 → I
(2)
z′′z′′ = 1

1240(60)3 = 720, 000 [mm4]
I
(2)
zz = I

(2)
z′′z′′ + A2d

2
2 = 720, 000 + (40 × 60)(−16)2 = 1, 334, 000 [mm4]

Composite Area} =⇒ Izz = I(1)
zz + I(2)

zz = 975, 000 + 1, 334, 000 = 2.31 × 106 [mm4]

Example 13-3

Consider a beam subjected to pure bending with rectangular cross-section of width “b” and
height “a” as shown below. At a certain location x of the beam, assume that the bending moment
is given by Mz = 7, 000 N m. Determine the maximum bending stress.

y

z

b = 15 cm

a = 20 cm
x

MM

y

Figure 13.17:

The moment of inertia is given by:

Izz =
1
12

ba3 =
1
12

(
15 × 10−2 m

) (
20 × 10−2 m

)3
= 10−4 m4

The axial stress is given by
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σxx = −Mzy

Izz
= − (7, 000 N m)y

10−4 m4

The stress is a maximum at either the upper or lower surface of the beam. At the lower surface
(y = −10 cm), the stress is given by

σxx = −Mzy

Izz
= − (7, 000 N m)(−0.1 m)

10−4 m4
= 7 × 106 N

m2
= 7 MPa

Note that the stress is positive indicating a tensile stress at the lower surface. Given the direction
of the bending moment, we would expect tension on the lower surface and compression on the upper
surface.

13.4 Shear and Bending Moment Relationships

In order to determine the axial stress σxx at any point x along the length of the beam from equation
(13.13), or to determine the deflection of the beam u0y(x) from equation (13.12), it is necessary that
we have the expression for the bending moment Mz(x). In this section, we develop the methods for
determining the bending moment distribution Mz(x) but also the shear distribution Vy(x) in terms
of the applied loads.

Consider first a beam that has a distributed load py acting in the y direction along its top edge
as shown below. It is assumed that py has units for force

length and is a function of x.

x

y py (x)

Figure 13.18: Beam with Distributed Load Applied to Top Surface

Note that the distributed load would normally be applied as a pressure on the top surface but
the pressure can be multiplied by the width of the top surface to obtain py which would have units
of force per length in the x direction. Note also that the load may be applied either to the upper or
lower surface of the beam since this results in identical bending moments. Now consider a free-body
of the beam of length ∆x taken at some position x. At this location x, we assume the distributed
load py(x)is applied. The distributed load will cause axial stress σxx and shear stress σxy within the
beam but these may be replace by the equivalent resultants P , Vy and Mz as was shown above in
equation (13.2). Consequently, we have the free-body diagram shown below:

Note the following sign convention for shear and bending moment: on the right face, the
shear is positive in the +y direction, and the bending moment is positive in the counter clockwise
direction (follows right hand rule for moments). On the left face, the positive directions are reversed
in order to satisfy conservation of linear and angular momentum. The positive direction of py is in
the +y direction. Applying conservation of linear momentum in the x direction gives:
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x

Figure 13.19: Free-Body of Differential Length of Beam

0 = P (x + ∆x) − P (x)

Dividing by ∆x and taking the limit as ∆x → 0 gives

dP

dx
= 0 (13.17)

Equilibrium in the y direction gives

0 = Vy(x + ∆x) − Vy(x) + py∆x

Dividing by ∆x and taking the limit as ∆x → 0 gives

dVy

dx
= −py (13.18)

Applying conservation of angular momentum (z-component) about the center of differential
element gives:

0 = Mz(x + ∆x) − Mz(x) + V (x + ∆x)
(

∆x

2

)
+ V (x)

(
∆x

2

)
+

∫ x+∆x

x+∆x
2

py dx −
∫ x+∆x

2

x

py dx

Dividing by ∆x and taking the limit as ∆x → 0 gives

dMz

dx
= −Vy (13.19)

Note that the distributed load terms produce equal and opposite moments about the center as
∆x → 0 and they cancel out.

Thus, we have the following three equilibrium equations relating P , Vy and Mz to the applied
distributed load py:
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dP

dx
= 0

dVy

dx
= −py (13.20)

dMz

dx
= −Vy

Equations (13.18) and (13.19) may be combined to obtain:

d2Mz

dx2
= −dVy

dx
= py (13.21)

Equations (13.20) indicate that the bending moment is always one order higher polynomial in x
than the shear; i.e., if the shear is a constant, then the bending moment is linear in x and so forth.

Recalling the definition of a maximum from calculus, we see that the shear-moment relation
indicates that

• Mz is a maximum (or minimum) at the point where Vy = 0.

Also, from the shear-load relationship, we see that

• the slope of the Vy curve at point x is equal to the value −py at point x, and

• the slope of the Mz curve at point x is equal to the value −Vy at point x.

Equations (13.20) may be integrated to obtain the shear and bending moment as a function of x.
Integrating each equation from some point x0 to an arbitrary point x provides the following results:

∫ x

x0

dVy = −
∫ x

x0

py dx or Vy(x) = Vy(x0) −
∫ x

x0

py dx (13.22)

Similarly, for the bending moment equation;

Mz(x) = Mz(x0) −
∫ x

x0

Vy dx (13.23)

Equation (13.23) states that if the bending moment is known at location x0, then the bending
moment at any point x can be obtained by integrating the shear expression from x0 to x. If Vy

is plotted against x, the integral
∫ x

x0
Vy dx represents the area under the shear curve from x0 to x.

This suggest a graphical statement for equations (13.22) and (13.23) as

Vy(x) = Vy(x0) − area under the py curve from x0 to x

Mz(x) = Mz(x0) − area under the Vy curve from x0 to x (13.24)

Example 13-4

Consider a simply supported beam of length L = 10 ft with a uniformly distributed normal load
of 50 lb

ft and a concentrated load of 200 lb as shown below.
Make a free-body of the entire structure by removing the supports and placing the appropriate

reactions at the support points. At the pin (left end) we have both x and y reactions; at the roller
support, we have only a y (vertical) reaction.



314CHAPTER 13. STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BEAMS IN BENDING

x

y
200 lb

50 lb/ft

6 ft 4 ft

Figure 13.20:

x

y
200 lb

50 lb/ft

6 ft 4 ft

R1x

R1y R2y

Figure 13.21:

Determine the reactions first. Apply conservation of linear and angular momentum to obtain the
following three equilibrium equations:

0 =
∑

Fx = R1x

0 =
∑

Fy = R1y + 500
lb
ft

(10 ft) − 200 lb + R2y

0 =
∑

Mleft end = 500
lb
ft

(10 ft)(5 ft) − 200 lb(6 ft) + (10 ft)R2y

Solving for the reactions, we obtain

R1x = 0, R1y = −170 lb, R2y = −130 lb

which can shown on a free-body of the structure:
In constructing shear and moment diagrams, In evaluating the shear and moment, and the

constants of integration, it is imperative to keep in mind the sign convention for shear and
bending moment that was established earlier:

Note that we have the following values of shear and bending moments at the end points:

x = 0 : Vy(0) = 170 lb, Mz(0) = 0
x = 10 ft : Vy(10) = −130 lb, Mz(0) = 0

In this example, we will consider three methods to obtain the shear and moment diagrams:
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x

y
200 lb

50 lb/ft

6 ft 4 ft

130 lb170 lb

Figure 13.22:

Sign Convention for V and M

MzMz

Vy

Vy

py (x)

x

y

Figure 13.23:

• Free-body diagram method,

• integration method and

• graphical method.

As we will see, each method offers some advantageous but the method of choice will often depend
on the problem. For example, when distributed loads are applied to the beam, the integration method
is usually preferred.

Free-Body Diagram Method to Obtain V & M

In order to obtain the shear diagram for the complete beam, it will be necessary to consider two
free-body diagrams; one for the segment to left of the concentrated force and one to the right of
the concentrated force. This is because there will be discontinuity in Vy(x) at x = 6 ft where the
concentrated shear is applied. First, consider a free-body obtained by cutting at any point x in the
range 6 < x ≤ 10 (to the right of the concentrated shear load):

6 < x ≤ 10 ft
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50 lb/ft

130 lbVy (x)

x

Mz (x)

10 − x

Figure 13.24:

Apply conservation of linear and angular momentum to the free body above to obtain the fol-
lowing equilibrium equations:

0 =
∑

Fy = −Vy(x) + 50
lb
ft

(10 − x) ft − 130 lb

0 =
∑

Mleft end = −Mz(x) + 50
lb
ft

(10 − x) ft
10 − x

2
ft − 130 lb(10 − x) ft

Thus we have

Vy(x) = 370 − 50x (lb)
Mz(x) = 50 (10−x)2

2 − 130(10 − x) = 1, 200 − 370x + 25x2 (ft - lb)

}
6 < x ≤ 10 ft

Important note: The shear equation above does not apply at the point x = 6 because the shear
is discontinuous at x = 6 due to the 200 lb shear load at x = 6.

0 ≤ x < 6 ft

Mz (x)

Vy (x)
x

6 − x
10 − x

50 lb/ft 200 lb

130 lb

Figure 13.25:

Apply conservation of linear and angular momentum to the free body above to obtain the equi-
librium equations:
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0 =
∑

Fy = −Vy(x) + 50
lb
ft

(10 − x) ft − 200 lb − 130 lb

0 =
∑

Mleft end = −Mz(x) + 50
lb
ft

(10 − x) ft
10 − x

2
ft − 200 lb(6 − x) ft − 130 lb(10 − x) ft

Thus we have

Vy(x) = 170 − 50x (lb)
Mz(x) = −170x + 25x2 (ft - lb)

}
0 ≤ x < 6 ft

Important note: The shear equation above does not apply at the point x = 6 ft because the shear
is discontinuous at x = 6 ft due to the 200 lb shear load at x = 6 ft.

We can now plot the above equations to obtain the shear and moment distribution.

Mz (x) = −170x + 25x2 Mz (x) = 1200 − 370x + 25x2

Vy (x) = 170 − 50x Vy (x) = 370 − 50x
Vy (lb)

Mz (ft-lb)

x (ft)
x = 3.4 x = 7.4

6 ft 4 ft

50 lb/ft 200 lb

x

y

170

−130

70

−289

−120

−169

−130

130 lb170 lb

x (ft)

Figure 13.26:

Recall the relationships between moment, shear and load: dMz

dx = −Vz and dVy

dx = −py. Recalling
the definition of a maximum from calculus, we see that the shear-moment relation indicates that
Mz is a maximum (or minimum) at the point where Vy = 0. Also, from the shear-load relationship,
the slope of the Vy curve at point x is equal to the value (−py) at point x, and the slope of the Mz

curve at point x is equal to the value (−Vy) at point x.
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For the left section of the beam, we set Vy(x) = 0 = 170 − 50x (lb) and solve for x to obtain
x = 3.4 ft as the location of the maximum moment. Substituting x = 3.4 into the moment equation
gives Mz(3.4) = −170(3.4) + 25(3.4)2 = −289 ft - lb. Similarly, for the right portion of the beam
(to right of 200 lb load), we obtain Vy(x) = 0 at x = 7.4 ft and Mz(7.4) = −169 ft - lb.

Integration Method to Obtain V & M

In the above, we used conservation of linear and angular momentum together with free-body
diagrams to obtain the shear and moment distribution. We can also use the integration method
by integrating equations (13.18) and (13.19). Using the integration method, we must start at some
point where the shear and bending moment are known. Lets start at x = 0 where Vy(0) = 170,
Mz(0) = 0.

0 ≤ x < 6 ft

We know that Vy(0) = 170 lb, Mz(0) = 0.
First integrate dVy

dx = −py from 0 to x (0 ≤ x < 6) to obtain

Vy(x) = Vy(0) −
∫ x

0

py dx = 170 −
∫ x

0

(+50) dx = 170 − 50x (lb) (0 ≤ x < 6 ft)

Important note: The shear equation above does not apply at the point x = 6 because the shear
is discontinuous at x = 6 ft due to the 200 lb shear load at x = 6 ft.

Now integrate dMz

dx = −Vy from 0 to x (0 ≤ x < 6) to obtain

Mz(x) = Mz(0) −
∫ x

0

Vy dx = 0 −
∫ x

0

(170 − 50x) dx = 170x + 25x2 (ft - lb) (0 ≤ x < 6 ft)

6 < x ≤ 10 ft

To complete the solution, we can integrate either from 6 to x (x > 6) or from 10 to x. It is
easier to integrate from 10 to x because we know the starting values of shear and moment at x = 10:
Vy(10) = −130 lb, Mz(0) = 0.

As a first approach, integrate dVy

dx = −py from 10 to x (6 < x ≤ 10) to obtain

Vy(x) = Vy(10) −
∫ x

10

py dx = −130 −
∫ x

10

(+50) dx = 370 − 50x (lb) (0 ≤ x < 6 ft)

Important note: The shear equation above does not apply at the point x = 6 because the shear
is discontinuous at x = 6 due to the 200 lb shear load at x = 6.

Now integrate dMz

dx = −Vy from 10 to x (6 < x ≤ 10) to obtain

Mz(x) = Mz(10) −
∫ x

10

Vy dx = 0 −
∫ x

10

(370 − 50x) dx = 1, 200 − 370x + 25x2 (ft - lb) (0 ≤ x < 6 ft)

If we want take the second approach and integrate from 6 to x, we need the shear and moment
at x = 6+ (the + means just to the right of 6). This is somewhat tricky because of the 200 lb shear
applied at x = 6 which creates a discontinuity in the shear at x = 6. The correct value of shear to
start with would be the value of shear at x = 6− obtained from the (0 ≤ x < 6) solution “plus” the
shear load at x = 6: Vy(6) = [170 − 50(6)] + 200 = 70.
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First integrate dVy

dx = −py from 6+ to x (6 < x ≤ 10) to obtain

Vy(x) = Vy(6+) −
∫ x

6

py dx = 70 −
∫ x

6

(+50) dx = 70 − 50(x − 6) = 370 − 50x (lb) (6 < x ≤ 10 ft)

Important note: The shear equation above does not apply at the point x = 6 because the shear
is discontinuous at x = 6 due to the 200 lb shear load at x = 6.

From the solution for 0 ≤ x < 6, Mz(6) = 170(6) + 25(6)2 = −120 ft - lb.
Now integrate dMz

dx = −Vy from 6+ to x (6 < x ≤ 10) to obtain

Mz(x) = Mz(6) −
∫ x

6

Vy dx = −120 −
∫ x

6

(370 − 50x) dx = 1, 200 − 370x + 25x2 (ft - lb) (6 < x ≤ 10 ft)

Comparing results for the two different approaches for integrating in the range (6 < x ≤ 10), we
note that the results are identical.

The shear and moment diagrams may now be sketched as before. See the sketch above.

Graphical Method to Obtain V & M

Recall that the shear and moment are related by

dVy

dx
= −py

dMz

dx
= −Vy

Integrating each equation from some point x0 to an arbitrary point x provides the following
results:

Vy(x) = Vy(x0) −
∫ x

x0

py dx

Mz(x) = Mz(x0) −
∫ x

x0

Vy dx

If Vy is plotted against x, the integral
∫ x

x0
Vy dx represents the area under the shear curve from

x0 to x. This suggest a graphical statement for the equations as

Vy(x) = Vy(x0) − area under the py curve from x0 to x

Mz(x) = Mz(x0) − area under the Vy curve from x0 to x

Lets use this method to determine the value at x = 6 ft. We already know that at x = 0,
Vy(0) = 170 lb and Mz(0) = 0. The py curve is given by:

Vy(6) = Vy(0) − area under the py curve from 0 to 6

= 170 lb −
[(

50
lb
ft

)
(6 ft)

]
= −130 lb

This gives us two points on the Vy curve from x = 0 to x = 6:
Recall that dVy

dx = −py. Since the load py is a constant from x = 0 to x = 6, then Vy is a linear
function in x (a straight line) from x = 0 to x = 6.
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py

py = 50 lb/ft

x

Figure 13.27:

x

Vy (x)
170 lb

x = 6 ft

−130 lb

Figure 13.28:

x

Vy (x)
170 lb

x = 6 ft

−130 lbslope = −50 lb/ft

Figure 13.29:

Also the slope of the shear curve is equal to −py or −50 lb
ft from x = 0 to x = 6. The equation

of this curve is easily obtained: Vy(x) = 170 − 50x lb. Note that the shear is zero at x = 3.4 ft.

For the moment, we write
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Mz(6) = Mz(0) − area under the Vy curve from 0 to 6

= 0 −
[
1
2
(3.4 ft)(170 lb) +

1
2
(2.6 ft)(−130 lb)

]
= −120 ft - lb

This gives us two points on the Mz curve to plot Mz(0) = 0 and Mz(6) = −120 ft-lb:

x

x = 6 ft

Mz

0

−120 ft-lb

Figure 13.30:

Since the shear is linear from x = 0 to x = 6, then the moment is quadratic (a parabola). To
determine whether the parabola is convex upward or downward, consider equation (13.21) d2Mz

dx2 =
−dVz

dx = py. For a positive py, d2Mz

dx2 > 0, which means that the Mz curve is convex upwards. In
our case, py = +50 lb

ft and therefore the curve is convex upwards. From dMz

dx = −Vy, we know the
moment is a max or min where Vy = 0. Setting the shear equal to zero and solving for x gives
x = 3.4 ft. Mz(3.4) = 0 − 1

2 (3.4)(170) ft - lb. We now sketch the curve:

Mz

(ft-lb)

x (ft)x = 3.4 x = 6

−120

−289

Figure 13.31:

The remaining portion of the shear and moment (from x = 6 to x = 10) may be obtain in a
similar manner to obtain the complete shear and moment diagrams.

Example 13-5

Consider the cantilever beam in Example problem 13-4 and assume the beam has the cross-section
shown in Example 13-2.
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a) Determine the bending stress at x = 6 ft (top surface) and (bottom surface).

b) Determine the location and magnitude of the maximum bending stress. Indicate whether it is
tensile or compressive.

From example 13-2, the cross-section and location of the centroid are shown in the sketch below.
The moment of inertia was determined to be Izz = 2.31 × 106 mm4.

y

z

34 mm = 1.34 in

46 mm = 1.81 in

Figure 13.32:

Converting the moment of inertia to English units gives:

Izz = 3.31 × 106 mm4

(
in

25.4 mm

)4

= 7.95 in4

a) From the moment diagram in Example 13-4, Mz(6 ft) = 120 ft-lb = −1, 440 in-lb. The bending
stress is given by equation (13.13)

σxx = −Mzy

Izz

At the top surface, y = 1.34 in, and the bending stress is equal to

σxx( 72′′, 1.34′′ ) = −Mzy

Izz
= − (−1, 440 in - lb)(1.34 in)

7.95 in4
= 243 psi (tension)

At the bottom surface, y = −1.81 in, and the bending stress is equal to

σxx( 72′′,−1.81′′ ) = −Mzy

Izz
= − (−1, 440 in- lb)(−1.81 in)

7.95 in4
= −328 psi (compression)

b) For a prismatic beam, the maximum bending stress will occur at the location of maximum
bending moment. From Example 13-4, the maximum bending moment occurs at x = 3.4 ft
= 40.8 in, and is equal to Mz = −289 ft-lb = −3, 468 in-lb. The bending stress at this point
is given by

σxx( 40.8′′, y ) = −Mzy

Izz
= − (−3, 468 in - lb )y

7.95 in4
= 436.2y psi
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The last result shows that at x = 3.4 ft (40.8 in), the bending stress is tensile for positive y
(above the centroidal axis) and compressive for negative y. Thus the maximum tensile stress
will occur at the upper surface where y = 1.34 in and is given by

σxx( 40.8′′, 1.34′′ ) = 436.2y psi = 436.2(1.34) psi = 585 psi (maximum tensile stress)

Note that in determining the bending stress, we have not used any material properties (Young’s
modulus, E, for beam bending). For statically determinate structures like the cantilever beam
considered here, the stress is always independent of material properties since the internal
stress solution may be obtained from equilibrium equations alone. However, the majority
of structures are statically indeterminate, and the stress solution will depend on material
properties. Several examples of statically indeterminate uniaxial bar problems were presented
in Chapter 11 (see Examples 11-2 and 11-3).

Example 13-6

Given the following cantilevered bar with a distributed and applied shear load, determine through
integration methods the equations for the shear (Vy), moment (Mz), and displacement (u0y). Also,
draw the shear and moment diagrams.

x

y

10 kN15 kN/m

1 m 3 m

Figure 13.33:

We first determine the reactions as the wall. Draw a free-body diagram labeling the shear and
moment reaction at the wall:

MA

RA x

y

10 kN15 kN/m

1 m 3 m

Figure 13.34:

Use conservation of linear and angular momentum to obtain the reactions:
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0 =
∑

Fx = RA −
(

15
kN
m

)
(1 m) − 10 kN

∴ RA = 25 kN

0 =
∑

Mz (about left end) =
(

15
kN
m

)
(1 m)(0.5 m) + (10 kN)(4 m) + MA

∴ MA = −47.5 kN - m

Now use equation (13.18) [or (13.22)] to obtain the shear distribution.
For 0 < x < 1 m:

dVy

dx
= −py = −

(
−15

kN
m

)
= 15

kN
m

(due to the distributed load - note sign of py)

By integration: Vy = 15x + C
at x = 0, Vy = −RA = −25 kN, ∴ C = −2
∴ Vy(x) = 15x − 25 kN
In evaluating the shear and moment, and the constants of integration, it is imperative to keep

in mind the sign convention for shear and bending moment that was established earlier:

Sign Convention for V and M

MzMz

Vy

Vy

py (x)

x

y

Figure 13.35:

For 1 < x < 4 m:

dVy

dx
= 0 (distributed load is zero)

By integration: Vy = C
at x = 1, from the shear equation for 0 ≤ x ≤ 1, Vy(1) = 15(1) − 25 = −10 kN

∴ Vy = −10 kN = C ∴ Vy(x) = −10 kN
Now we can determine the moment distribution using equation (13.19):
For 0 < x < 1 m:

dMz

dx
= −Vy(x) = −15x + 25 kN

By integration: Mz(x) = −7.5x2 + 25x + c
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at x = 0, Mz(0) = MA = −47.5 kN - m
∴ M(x) = −7.5x2 + 25x − 47.5 (kN - m)
For 1 < x < 4 m:

dMz

dx
= −Vy(x) = 10 kN

By integration: Mz(x) = 10x + C
at x = 1, from the moment equation for 0 ≤ x ≤ 1, Mz(1) = −30 kN - m
∴ Mz(1) = −30 = 10(1) + C ∴ C = −40
∴ Mz(x) = 10x − 40 (kN - m)
We can now draw the shear and moment distribution for the beam using the equations above.
The last step is to determine the displacement equation.
For 0 < x < 1 m:

d2u0y

dx2
=

Mz(x)
EIzz

=
−7.5x2 + 25x − 47.5

EIzz
=⇒ du0y

dx
=

1
EIzz

(
−7.5x3

3
+ 25

x2

2
− 47.5x + c3

)

u0y =
1

EIzz

(
−7.5x4

12
+ 25

x3

6
− 47.5

2
x2 + c3x + c4

)

at x = 0, the beam is fixed from displacement and rotation (cantilever beam)

u0y(x = 0) = 0 =⇒ c4 = 0,

du0y

dx
(x = 0) = 0 =⇒ c3 = 0

u0y =
1

EIzz

(
−7.5x4

12
+ 25

x3

6
− 47.5

2
x2

)
m 0 < x < 1 m

For 1 < x < 4 m:

d2u0y

dx2
=

Mz(x)
EIzz

=
10x − 40

EIzz
=⇒ du0y

dx
=

1
EIzz

(
10x2

2
− 40x + c1

)

u0y =
1

EIzz

(
10x3

6
− 40x2

2
+ c1x + c2

)

Apply the boundary condition at x = 1. Evaluate the the displacement at x = 1 using the
solution for 0 ≤ x ≤ 1 and set equal to the solution for 1 ≤ x ≤ 4 at x = 1:

u0y|x=1 =
1

EIzz

(
−7.5(1)4

12
+

25(1)3

6
− 47.5(1)2

2

)
=

−20.2
EIzz

=
1

EIzz

(
10(1)3

6
− 40(1)2

2
+ c1(1) + c2

)
du0y

dx

∣∣∣∣
x=1

=
1

EIzz

(
−7.5(1)3

3
+

25(1)2

2
− 47.5(1)

)
=

−37.5
EIzz

=
1

EIzz

(
5(1)2 − 40(1) + c1

)
Thus we have two equations defining the constants of integration:

[
1 1
1 0

] {
c1

c2

}
=

{
−1.867
−2.5

}
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25 kN

47.5
kN-m

15 kN/m
10 kN

1 m 3 m

Vy

[kN]

−25

−10

Vy (x) = 15x − 25

Vy (x) = −10

Mz

[kN-m]

dVy (x)
dx

= −py (x)

dVy

dx
= 0

x

x

dVy

dx
= 15

Mz (x) = −7.5x2 + 25x − 47.5

−30

−47.5

dMz

dx
=

−15x + 25

dMz

dx
= 10

Mz (x) = 10x − 40

dMz (x)
dx

= −Vy (x)

Shear Diagram:

Moment Diagram:

Figure 13.36:

and the solution is:

c1 = −2.5
c2 = 0.633

Hence the displacement is given by
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u0y =
1

EIzz

(
5x3

3
− 20x2 − 2.5x + 0.633

)
m 1 < x < 4 m

Note that Izz must be in m4 and E in N
m2 or MPa.

Example 13-7

Plot u0y(EIz) for Example 13-6 using Scientific Workplace.

Solution

g(x) =

{
− 7.5x4

12 + 25x3

6 − 47.5
2 x2 if 0 < x ≤ 1

5x3

3 − 20x2 − 2.5x + 0.633 if 1 ≤ x < 4

u0y × EIzz

[
kN − m3

]

x

Figure 13.37:

Important note: Because we are plotting the displacement scaled by EIzz (which is typically a
large value), the above displacement “looks” very large. The actual displacement u0y(x) would in
fact be typically quite small (and usually difficult to see with the eye).

Example 13-8

If the cantilevered bar from Example 13-6 is assumed to be aluminum with a rectangular cross-
section, find the moment of inertia and the amount of deflection for the two cases:

1) base = 0.01 m, height = 0.1 m

2) base = 0.05 m, height = 0.2 m

Solution
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Case 1):

Izz = 1
12 (0.01)(0.1)3 = 1

12 × 10−5 m4

EAl = 70 GPa = 70 × 109 N
m2

}
EIzz = 70

12104 N · m2

= 700
12 kN · m2

u0y|x=4 =
−222.7

EIz
=

−222.7
700
12

= 3.8 m very large deflection!

Case 2):

Izz =
1
12

(0.05)(0.2)3 =
1
3
× 10−4 m4

EIzz =
70
3

105 N m2 =
7000

3
kN · m2

u0y|x=4 =
−222.7

EIz
=

−222.7
7000

3

= 0.095 m

Example 13-9

Given: The following bar is cantilevered at its right end and carries a distributed and applied load
as shown below. Determine by integration methods the equations for the shear (Vy) and moment
(Mz). Also, draw the Shear/Moment diagrams for the bar.

x

y

10 kN
15 kN/m

1 m3 m

Figure 13.38:

Solution

Draw the free-body diagram with shear and moment reaction at the right end.
Apply conservation of linear and angular momentum to determine the reactions:

Sum the forces.∑
F = 0 = RA −

(
15

kN
m

)
(1 m) − 10 kN

RA = 25 kN
Sum the moments.∑

M = 0 =
(

15
kN
m

)
(1 m)(0.5 m) + (10 kN)(4 m) + MA

MA = −47.5 kN m
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MA

RA x

y

10 kN
15 kN/m

1 m3 m

Figure 13.39:

Next, use integration to determine the shear/moment for each section.
0 ≤ x ≤ 3 m

dVy

dx
= −py = 0 (due to no distributed load)

By integration: Vy = C
at x = 0, Vy = 10 → C = 10 ∴ Vy(x) = 10 kN

dMz

dx
= −Vy(x) = −10 kN

By integrtion: Mz(x) = −10x + C

Mz(0) = 0 → C = 0 ∴ Mz(x) = −10x (kN - m)

3 < x < 4 m

dVy

dx
= −py = −

(
−15

kN
m

)
= 15

kN
m

(due to the distributed load)

By integration: Vy = 15x + C
at x = 3 m, Vy = 10 kN (from 0 < x < 3 solution for shear) → C = −35 ∴ Vy(x) = 15x − 35

dMz

dx
= −Vy(x) = −15x + 35 kN

By integration: Mz(x) = −7.5x2 + 35x + C
Mz(3) = −30 kN

m (from 0 < x < 3 solution for moment) → C = −67.5
∴ Mz(x) = −7.5x2 + 35x − 67.5

(
kN
m

)
The shear and moment diagrams may now be drawn using the shear and bending moment

equations derived above.

13.5 Shear Stress in Beam Bending

For the case of pure bending, we considered only the axial stress σxx under the assumption that
all shear stresses were zero. The conservation of linear momentum equation reduced to ∂σxx

∂x = 0
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25 kN
47.5
kN-m

15 kN/m10 kN

1 m3 m

Vy

[kN]

10

Mz

[kN-m]

dMz (x)
dx

= −Vy (x)−30

x

x

dVy (x)
dx

= −py (x)

− 47.5

25

Shear Diagram:

Moment Diagram:

Free Body Diagram:

Vy = 10

Mz = −10x

Mz = −7.5x2 + 35x − 67.5

Vy = 15x − 35

Figure 13.40:

which gives a solution of σxx = constant. However, as we have seen in previous examples dealing
with shear and moment diagrams, when transverse loads py or transverse shear forces are applied
to the structure, the moment distribution is no longer a constant. Hence the axial stress σxx is now
a function of x. Because the axial stress is not constant, a shear stress σxy must exist on the cross-
section in order to satisfy global equilibrium. We wish to determine this shear stress distribution
that exists at a cross section located at any point x. We first construct a free-body of the beam at
any point x by passing a horizontal cutting a plane at a distance y = h and two vertical cutting
planes at point x and x + ∆x, respectively, as shown below.

Note that the figure is drawn with the y-axis pointing downwards for visualization purposes only
and that no sign conventions have been changed. Although an almost rectangular cross section is
shown, note that the cross section may be any shape. On the top surface we see a shear stress which
will be a function of position y. On each end face we see an axial stress σxx as well as a shear stress
σxy. We can apply conservation of linear momentum in the x direction by summing forces due to
the stresses in the x direction for the cross section located from any point y = h to the outer most
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End View

y

z

t (y)

σxx (x)

σyx (y)

∆x

x + ∆x

c

h

dy

dA = tdy

x

y

z

t (y)

x

y = h

c

y

σxx (x + ∆x)

σxy

Figure 13.41: Free-Body of Beam at (x, y = h )

point (y = c) of the beam. This gives the following equilibrium equation:

0 =
∑

Fx = −
∫ x+∆x

x

σyx( x, y = h )t(y) dx +
∫ c

h

σxx(x + ∆x, y )t(y) dy −
∫ c

h

σxx( x, y )t(y) dy

(13.25)

Note that the bending stress and width of the beam (t) are functions of y. Divide the above
equation by ∆x to obtain:

σyx( x, h )t(y) =
∫ c

h

σxx( x + ∆x, y ) − σxx( x, y )
∆x

t(y) dy (13.26)

Take the limit as ∆x → 0 for the stress term to obtain

lim
∆x→0

σxx(x + ∆x, y ) − σxx(x, y )
∆x

=
dσxx(x, y )

dx
(13.27)

Thus equation (13.26) becomes

σyx(x, h )t(y) =
∫ c

h

dσxx

dx
t(y) dy (13.28)

The stress term in the last equation can be written in terms of the bending moment by using
equation (13.13) to obtain

dσxx

dx
=

d
(
−Mzy

Izz

)
dx

= − y

Izz

dMz

dx
(13.29)
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Now introduce the relation between bending moment and shear, equation (13.20), into the above
to obtain

dσxx

dx
= − y

Izz
(−Vy) (13.30)

With the above result, equation (13.28) becomes

σyx( x, h )t(y) =
∫ c

h

y

Izz
Vyt(y) dy (13.31)

The shear and moment of inertia terms may be taken outside the integral since they are functions
of x only. Hence, the last result may be written

σyx( x, h )t(y) =
Vy(x)
Izz

∫ c

h

t(y)y dy (13.32)

Dividing by the width t(y) gives

σyx( x, h ) =
Vy(x)
Izzt(y)

∫ c

h

t(y)y dy (13.33)

The integral term is a geometrical property so that the last result may be written

σyx(x, h ) =
Vy(x)
Izzt(y)

Q(h) (13.34)

where Q is called the first moment of the area and given by

Q(h) ≡
∫ c

h

yt(y) dy (13.35)

Equation (13.34) provides the magnitude of the shear stress at any distance y = h from the
centroidal axis. Note that at y = ±c (top or bottom surface of the beam), Q = 0 and hence the
shear stress is zero at the top and bottom locations of the cross-section. For a rectangular cross
section, we will show in a later example that the shear stress varies quadraticly over the cross section
and is a maximum at the centroid of the cross-section (y = 0).

The integral equation defining Q(h) can be simplified for simple composite cross-sections consist-
ing of rectangles or other simple shapes for which the centroid is known. Consider the cross-section
shown below:

We want to determine Q(h) ≡
∫ c

h
yt(y) dy for the shaded area in Figure 13.18(a). Note from

Figure 13.18(b) that this integral can be written as Q(h) ≡
∫ c

h
yt(y) dy =

∫ c

h
y dA where dA = tdy.

For the differential area dA in Figure 13.18(b), y can be taken as the distance to the centroid of dA,
i.e., y = ȳ for dA. Hence, for finite size areas, we can write the integral as a summation:

Q(h) ≡
∫ c

h

yt(y) dy =
∫ c

h

y dA =
c∑
h

ȳiAi (13.36)

As an example, consider the T section below. We wish to determine Q(0), i.e., at the centroid.
We divide the area above y = 0 into two areas as shown. From Equation (13.36), we obtain:
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yy

y
A1

A2 y1y2

centroid
of body

(a) (b) (c)

y y

z zz

y = c t (y)
y

dy

centroid
of body

dA = tdy

y = hy = h

Figure 13.42: Geometry for Determination of Q (first moment of area)

Q(0) = ȳ1A1 + ȳ2A2

= 24 mm(80 mm × 20 mm) + 7 mm(40 mm × 14 mm)
= 42, 300 mm3

y1 = 24
z

y

A1

A2

16

14

80

20

60

40

centroid
of T

all
dimensions
in mm

Figure 13.43:

Alternately, we could have taken the area below y = 0 to obtain the same result:

Q(0) = ȳ1A1

= −23 mm(−40 mm × 46 mm) = 42, 300 mm3

Note that the area is negative in the equation above because the area is below the z axis.
Examples of both methods for determining Q may be found in the examples below.

Example 13-10
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all
dimensions
in mm

z

y

A1

14

80

20

60

40

centroid
of T

y1 = −23

Figure 13.44:

z

y

h

c

t

c

Figure 13.45:

Consider a rectangular cross-section of width t and height 2c Now calculate Q(h):

Q(y = h) =
∫ c

h

yt dy = t

∫ c

h

y dy =
t

2
(c2 − h2)

Note: at top or bottom, Q(y = ±c) = 0
at center, Q(y = 0) = t

2c2 = c
2 (tc)

Thus, Q is 0 at the top and bottom, is a maximum at centroid, and varies quadraticly from top
to bottom.

For the rectangular cross section, σxy is a maximum at centroid and is given by:

σxy(x, y = 0 ) =
3
4

Vy(x)
tc

.

Example 13-11

Consider a beam with the cross-section shown below. The centroid is located 36 mm from the
top surface (or 46 mm from the bottom surface) and the moment of inertia about the z axis is
determined to be Iz = 2.31 × 106 mm4 (see Example 13-2). Assume that at some point along the
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length of the beam, the shear has a value of Vz = 10×103 N. Determine the shear stress at y = +14
mm and y = −14 mm.

Given:

36

46

z

y

16

14

80

20

60

40

all
dimensions
in mm

Figure 13.46:

Solution

The shear stress at any point is given by: σxy( x, y ) = Vy(x)Q(y)
Izzb(y)

Substituting the values of Vy and Izz gives: σxy = 10×103[N]Q(y)
2.31×106[mm4]b(y)

At y = 14 mm: Q(14 mm) =
∫ 34

14
yt(y) dy =

∫ 34

14
y(80) dy = y2

2 80
∣∣∣34
14

= 38.4 × 103 [mm3]

Alternately, we could determine Q(14 mm) using Equation (13.36). Divide the area above y = 14
mm into two areas as shown to the right.

Substituting Q(14 mm) in the shear stress equation gives:

σxy(y = 14 mm) =
10 × 103[N] 38.4 × 103[mm3]

2.31 × 106[mm4] 80[mm]
= 2.079

N
mm2

= 2.079 × 106 N
m2

= 2.079 MPa

Similarly, σxy(y = −14 mm) = 10×103[N] 38.4×103[mm3]
2.31×106[mm4] 40[mm] = 4.157 N

mm2 = 4.157 MPa
The shear stress is of course a maximum at the centroid. Q(0) is given by:

Q(0) = ȳ1A1 = −23(−40 × 46) = 42, 300 mm3

Note that the area is negative in the equation above because the area is below the z axis. The
shear stress becomes:

σxy(y = 0) =
10 × 103[N] 42.3 × 103[mm3]

2.31 × 106[mm4] 40[mm]
= 4.578

N
mm2

= 4.578 MPa

At the upper surface, Q(34 mm) = 0 and at the lower surface, Q(−46 mm) = 0 which means
that the shear stress is zero at the upper and lower surface. For example,
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all
dimensions
in mm

z

y

A1

14

80

20

60

40

centroid
of T

y1 = −23

Figure 13.47:

Q(−46 mm) = Q(14 mm) +
∫ 14

−46

y40 dy = 38.4 × 103 + 40
y2

2

∣∣∣∣
14

−46

= 0

Consider another cross-section. Assume the same shear force and evaluate the shear stress at
the centroid of the rectangular cross-section.

20 cm

5 cm

z

y

Figure 13.48:



13.5. SHEAR STRESS IN BEAM BENDING 337

Deep Thought  

17 men stand atop a prototype strutless wing design  
to demonstrate its strength. 
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13.6 Questions

13.1 How is a shear stress created from a shear force and how are tensile and compressive forces
created from bending moments? (Hint: Examine the properties of a thin, rubber eraser)

13.2 How are the properties of the cross section of a beam incorporated into the equations repre-
senting the shear and normal stresses for a beam?

13.7 Problems

13.3 Determine the equations for the shear, V (x), and moment, M(x), in each of the following
beams. Plot the functions along the x-axis. Use the given coordinate system for your answer.

a.

4000 lbf
1000 lbf /in

3 ft 2 ft

x

y

Problem 13.3 a

b.

60 kN/m

3 m 3 m

x135 kN-m

y

Problem 13.3 b

c.

d.

e.

f.

g.

h.
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y

x

20 kips
2 kips/ft

3 ft 4 ft 7 ft

Problem 13.3 c

y

x

P

4L/5 L/5

Problem 13.3 d

y

x

p0

L

Problem 13.3 e

i.

j.

k.

l.

m.

13.4 Determine the stress distributions along the top of the beam for parts a, c, and f in problem
13.3. Assume the following rectangular cross-section.
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y

x

730 N/m 450 N

2 m 1 m

Problem 13.3 f

y

x

L

py (x) = p0

Problem 13.3 g

y

x

P

42 in 42 in

Problem 13.3 h

13.5 GIVEN : M = 5000 lbf · ft
DETERMINE : The moment of Inertia of the rectangle (I = 1

12ba3)

13.6 GIVEN : The two cantilevered beams loaded as shown in the figure below,

SELECT : The case that is better designed to support the applied load. Both beams have
identical cross-sections and material makeup. Justify your selection.

13.7 GIVEN : The beam shown.
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y

x

py = 10 N/m

2 m 2 m 2 m

Problem 13.3 i

y

x

10 ft

40 lbf 20 lbf

10 ft

Problem 13.3 j

y

x

10 ft 10 ft

10 lbf /ft

Problem 13.3 k

y

x

225 N 115 N

3 m1.5 m 1.5 m

Problem 13.3 l

E, I are constants.

REQUIRED : (all algebra, no numbers!)

a) Draw Shear and Bending moment diagrams.
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y

x

20 lbf /ft

10 ft 15 ft

Problem 13.3 m

1 in

6 in

Beam Cross
Section

Problem 13.4

z

x

b = 6 in

a = 8 inM M

y

y

Problem 13.5

L

(a) (b)

L

Problem 13.6

b) Assuming a rectangular cross-section, find the maximum normal tensile stress, σxx, and
its location.
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y

z
L

p0

h

b

y

x

Problem 13.7

c) Determine u(x), the vertical displacement at every point and graph.

d) Determine the maximum vertical displacement and its location.

13.8 GIVEN : The beam shown.

E, I = constants

y

z

50 lbf /ft 100 lbf

7 ft 3 ft

3 in

5 in

y

x

Problem 13.8

REQUIRED :

a) Draw V & M diagrams.

b) Assuming a rectangular cross-section as shown, find the maximum normal compressive,
σxx, and its location.

c) Determine the maximum shear stress and the planes on which it acts.

REQUIRED FOR 13.9 THROUGH 13.14 :

a) Draw shear & moment diagrams.

b) Find the maximum normal stress, σxx, and its x location.

c) Determine the transverse displacement uy(x).

d) Determine the maximum transverse deflection and its x location.

e) Your answers may be in terms of E, Izz.

13.9

13.10

13.11

13.12

13.13

13.14
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p0

L

y

x

Problem 13.9

y

x

180 N 90 N

3 m 3 m

Problem 13.10

y

x

10 lbf /ft

10 ft 10 ft

Problem 13.11

y

x

450 N

1.5 m1.5 m

Problem 13.12

13.15 GIVEN : The beam shown.

E = 200 GPa

Izz = 1.28 × 109 mm4

REQUIRED :

a) Draw Shear and Bending moment diagrams.

b) Assuming a rectangular cross-section, find the maximum normal tensile stress, σxx, and
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y

x

PP

L/2 L/2

Problem 13.13

y

x

5 lbf /ft (up) 5 lbf /ft (down)

15 ft 15 ft

Problem 13.14

1.5 1.5

y

x

4 kN 9 kN

6 m

1.5 m 1.5 m

Problem 13.15

its location.

c) Determine uy(x) the vertical displacement at every point and graph.

d) Determine the maximum vertical displacement and its location.

13.16 GIVEN : The beam shown.

E = 2.9 × 107 psi

Izz = 3000 in4

REQUIRED :

a) Draw Shear and Bending moment diagrams.

b) Assuming a rectangular cross-section, find the maximum normal tensile stress, σxx, and
its location.

c) Determine uy(x), the vertical displacement at every point and graph.
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34 lbf /ft 20 lbf /ft

30 ft 20 ft

x

30 ft 20 ft

Problem 13.16

d) Determine the maximum vertical displacement and its location.

13.17 GIVEN : The beam shown.

P = 45
kN
m

L = 7 m
h = 0.5 m
b = 0.3 m

E = 0.1029 GPa

x

y
P

3.5 m b3.5 m

y

h
z

Problem 13.17

REQUIRED :

a) Draw Shear and Bending moment diagrams.

b) Assuming a rectangular cross-section, find the maximum normal tensile stress, σxx, and
its location.

c) Determine u(x), the vertical displacement at every point and graph.

d) Determine the maximum vertical displacement and its location.

13.18 Determine the equations for the shear, V (x), and moment, M(x), for the beam shown below.
Plot the functions along the x-axis. For a square cross sectional beam (width w = 10 cm),
give the expressions for the normal stress distribution at the top of the beam. Consider the
origin ( 0, 0 ) to be located at the center of the cross section of the beam.

13.19 Draw Shear Force & Moment diagrams. For the given cross-section as shown, find the maxi-
mum normal compressive, σxx, and its location.
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x

15 kN/m

3 m2 m 2 m

10 kN

Problem 13.18

x

y

z

50 N/m 100 N

7 m 3 m

5 cm

y

Problem 13.19

z

5 m 12 kN 5 kN

10 m 6 m

10 cm
8 cm

5 cm

y y

x

Beam Cross
Section

1 cm

1 cm

Problem 13.20

13.20 Plot the Shear Force and Moment diagrams. Compute the largest tensile and compressive
bending stresses σxx in the beam shown, and show the position (x, y ) where they occur. Show
all calculations.

13.21 For the beam cross section shown in 13.20, calculate the moment of inertia with respect to
each axis y and z (i.e. Iyy, Izz).

13.22 Write expressions for V (x) and M(x) by interval for the beam shown, measuring the position
of x from the location given on the left end of the bar. Considering a given compressive axial
load of 50 MPa applied over the cross sectional area, calculate the position and magnitude
of the maximum normal stress for a square cross section as shown. If the failure criteria are
specified by a maximum stress of 140 MPa in tension and 250 MPa in compression, determine
if the system is adequate for the applied load.

13.23 GIVEN : The beam below.
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x

y

z

10 kN

10 cm

8 m

1 kN/m

50 MPa

y

6 m 6 m

Problem 13.22

E = 2.5 × 106 psi

Cross Section:

{ Note: Centroid is at the center of width of the cross section }

.
. 6 in

8 in

2 in

A

30 in

100 in

x

y
100 lbf A

cross section

Problem 13.23

REQUIRED :

a) Find the moment of inertia, Izz

b) Compute the normal (σxx) and shear (σxy) stress at point A in the above beam.

13.24 For the beam shown below and its corresponding cross section (Note the applied bending
moment on the left end and the concentrated 50 kN force at x = 2 m):

a) Obtain the expressions for shear force V (x) and moment M(x) along the beam.

b) Draw the shear (V ) and moment (M) diagrams with the appropriate units.

c) Calculate the maximum tensile stress and indicate the location where it occurs.

x

y

z
20 cm

10 cm

100 kNm

5 kN/m

50 kN

2 m 2 m

y

Problem 13.24
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13.25 GIVEN : The simple supported beam shown below:

x

y
P P

L/3 L/3 L/3

Problem 13.25

REQUIRED :

a) Draw the shear and moment diagrams by using free-body diagrams.

b) Determine the value and location of the maximum bending moment.

13.26 GIVEN : The beam shown below. E, Izz = constants; E = 106 psi; h = 2 cm; b = 1 cm.

Problem 13.26

REQUIRED : Determine the shear and moment equations by the integration method. Plot
py(x) vs. x, Vy(x) vs. x, and Mz(x) vs. x.

13.27 GIVEN : The simple supported beam shown below.

x

200 lbf /ft
400 lbf

70 in 30 in

Problem 13.27

REQUIRED :

a) Use the free-body method to obtain the shear and moment equations as a function of x.
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b) Draw shear and moment diagrams.

c) Determine the maximum value and location of the shear and bending moment.

13.28 GIVEN : The cantilevered beam shown below. E, Izz = constants; E = 106 psi.

Problem 13.28

REQUIRED :

a) Use the integration method to obtain the shear and moment diagrams.

b) Draw V & M diagrams.

13.29 GIVEN : The three beams in Cases A, B, and C shown below.

Case A:

Case B:

Case C:

Case A:

Case B:

Case C:

Problem 13.29

You will note that each case above is a slightly different representation of essentially the same
applied load. Case A is a quadratic representation; Case B is a piecewise-linear representation
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and Case C is a point load representation of the applied load. We want to see how much
difference these representations make in the results for shear and moment. The load is applied
to the cross-section shown below:

REQUIRED :

a) Plot the loads for Case A and Case B on one set of Load vs. x axis. Plot x in feet.

b) Plot the shear diagrams for all three cases on one set of Shear vs. x axis. Plot x in feet.

c) Plot the moment diagrams for all three cases on one set of Moment vs. x axis. Plot x in
feet.

d) Find the moment of inertia for the cross-section shown below about the y axis and about
the z axis (units of inches).

NOTE: You may want to use Scientific Workplace to produce the plots.

y

z
0.125 in 6 in

0.25 in

4 in

Problem 13.30

13.30 GIVEN : The cantilever beam used as a wing spar with flight loads as shown below for the
General Dynamics F-16 Fighting Falcon:

E, Izz = constants; E = 2024-T4 Aluminum; L = 15.5 ft; po = 4, 839 lbf
ft .

Problem 13.31

REQUIRED :

a) Determine the shear and moment equations by the integration method. Plot py(x) vs. x,
V (x) vs. x, M(x) vs. x
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b) Determine the moment of inertia of the beam about the y and z-axes.

c) Determine the deflection and stress at the bottom surface both as a function of x.

d) Plot the deflection and stress at the bottom surface as a function of x.

e) Determine the deflection at x = L.

f) Determine the stress at the bottom surface at x = L
2 .

g) Determine the shear and bending moment at x = 0.

13.31 GIVEN : The simple supported beam shown below. E, Izz = constants; E = 2024-T6 Alu-
minum; L = 15.5 ft,

Problem 13.32

Assume: py(x) = p0 cos
(

πx
2L

)
, po = 4, 839 lbf

ft .

REQUIRED :

a) Determine the shear and moment equations by the integration method. Plot py(x) vs. x,
V (x) vs. x, M(x) vs. x

b) Determine the moment of inertia of the beam about the y and z-axes.

c) Determine the deflection and stress at the bottom surface both as a function of x.
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d) Plot the deflection and stress at the bottom surface as a function of x.

e) Determine the deflection at x = L.

f) Determine the stress at the bottom surface at x = L
2 .

g) Determine the shear and bending moment at x = 0.

13.32 GIVEN : The simply supported beam shown below:

Problem 13.33

Let L = 10 ft, po = 100 lbf
ft , F = 5000 lbf. (note: these represents magnitudes only).

Assume the beam is made of 2024-T4 Aluminum and has a 3′′ square cross-section.

py =

[
L2

16
−

(
x − L

4

)2
]

16p0

L2
0 ≤ x ≤ L

2

py =

[
L2

16
−

(
x − 3L

4

)2
]

16p0

L2

L

2
≤ x ≤ L

REQUIRED : Watch the units, and work the problem in lbf, in.

a) Plot the distributed load as a function of x with x in feet.

b) Determine shear and moment equations using the integration method and plot as a func-
tion of x in ft.

c) Determine the deflection as a function of x and plot as a function of x in feet. State the
location of maximum deflection.

d) Determine the stress as a function of x and plot as a function of x in feet. State the
location of maximum tensile stress. What is the bending moment at the location of
maximum tensile stress? Is it the smallest/largest bending moment in the beam? What
is the deflection at the location of maximum tensile stress?

13.33 GIVEN : The simply supported beam shown below:

Let L = 16 ft, po = 1000 lbf
ft , F = 4000 lbf, Ma = Mb = 10, 000 lbf - ft.

(note: these represents magnitudes only)

Assume: The beam is made of 2024-T4 Aluminum and has a square cross-section with a height
of 2′′ and base of 3′′.
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Problem 13.34

py =

[
L2

16
−

(
x − L

4

)2
]

16p0

L2
0 ≤ x ≤ L

2

REQUIRED : Watch the units, and work the problem in lbf, in.

a) Plot the distributed load as a function of x with x in feet.
b) Determine shear and moment equations using the free body diagram method and plot as

a function of x in ft.
c) Determine the deflection as a function of x and plot as a function of x in feet. State the

location of maximum deflection.
d) Determine the stress as a function of x and plot as a function of x in feet. State the

location of maximum tensile stress. What is the bending moment at the location of
maximum tensile stress? Is it the smallest/largest bending moment in the beam? What
is the deflection at the location of maximum tensile stress?

13.34 GIVEN : The AISC ST2 ×3.85 cross-section shown to the right.

y

z

2.663
′′

0.293
′′

1.707
′′

0.193
′′

AISC ST2×3.85

Problem 13.35

REQUIRED : Determine

a) Centroid relative to the top surface.
b) Moments of inertia about the y and z axis.

13.35 GIVEN : The simple supported beam below is made of A36 structural steel has an AISC
W8 × 10 cross-section shown to the right.

REQUIRED : Determine:
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x
z

py = 200 lb/ft

20 ft

y

y

3.94
′′

0.205
′′

7.48
′′

0.170
′′

0.205
′′

AISC W8×10

Problem 13.36

a) Determine the transverse deflection uy(x)

b) The value and location of maximum bending stress (σxx) and shear stress (σxy).

13.36 GIVEN : The cantilevered beam shown below is made of 6061-T6 aluminum and has an Alu-
minum W4 × 0.15 cross-section shown to the right.

x

y

z

py = 10 lb/ft

10 ft

3
′′

0.23
′′

3.54
′′

0.15
′′

0.23
′′

Alum W4×0.15

y

10 ft

Problem 13.37

REQUIRED : Include the weight of the beam as part of the loading and determine:

a) The transverse deflection uy(x).

b) The value and location of maximum bending stress (σxx) and shear stress (σxy).

13.37 GIVEN : The simple supported beam below is made of A36 structural steel and has an AISC
WT6 × 20 cross-section shown to the right.

REQUIRED : Include the weight of the beam as part of the loading and determine:

a) The value and location of maximum bending stress (σxx) and shear stress (σxy).

13.38 GIVEN : The simple supported beam below is made of A36 structural steel and has an AISC
W10 × 26 cross-section shown to the right.

REQUIRED : Include the weight of the beam as part of the loading and determine:

a) The value and location of maximum bending stress (σxx) and shear stress (σxy).
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8.005
′′

0.5150
′′

5.455
′′

0.2950
′′

x

y

z

4 kN 9 kN

6 m

AISC WT6×20

y

1.5 m 1.5 m

Problem 13.38

x

y

z

34 lb/ft 20 lb/ft

30 ft 20 ft

AISC W10×26

y

30 ft 20 ft

5.77
′′

0.44
′′

9.45
′′

0.26
′′

0.44
′′

Problem 13.39


