
Chapter 5

STRESS TRANSFORMATION
AND MOHR’S CIRCLE

5.1 Stress Transformations and Mohr’s Circle

We have now shown that, in the absence of body moments, there are six components of the stress
tensor at a material point. In Cartesian coordinates, these are as shown below. For clarity, only the
stress components on the positive faces are shown.
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Figure 5.1: Stress Components in Cartesian Coordinates

Note that the continuum of interest may very often be irregular in shape, so that the choice of a
coordinate system is quite arbitrary. Nevertheless, this choice of coordinate system will determine
the planes on which the components of stress will be evaluated. These planes will not always be the
planes that are physically interesting or informative, such as the planes on which cracks will grow
in a solid, and there is need to be able to find the components of stress in other coordinate systems.

Consider a column loaded by a compressive load as shown below in the left figure below. Draw
two different free-body diagrams. In free-body #1, a cut is made normal to the x-axis. For free-body
#2, a cut is made at some angle θ to the x-axis and an x′-y′ coordinate system is defined with x′ at
the same angle θ to the x-axis.

In free-body 1, only a normal stress σyy will exist on the cut plane (the shear stress σxy is zero).
However, in free-body #2, both a normal stress σx′x′ and shear stress σx′y′ will exist on the inclined
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Figure 5.2: Column Loaded in Compression

plane (the traction vector on the inclined surface must have two components so that the resultant
force equilibrates the applied load). Consequently, it is important to be able to define the stress on
any plane with any orientation relative to the x-axis. In this case, no shear stress exists in the x-y
coordinate system, but does exist in the x′-y′ coordinate system. In free-body #2, σx′x′ and σx′y′

must satisfy conservation of linear momentum such that the sum of the horizontal components of
the forces due to the stresses are zero, while the sum of the vertical components must equal the
vertical force due to the applied traction on the column.

Thus, it is desirable to develop a method for determining the stresses on arbitrary planes at any
point once σxx, σyy, σzz, σyz, σxz, and σxy have been determined. The process of finding these
stresses in a coordinate system like x′-y′, which is rotated by some angle θ relative to the x-axis, is
called stress transformation.

In this text, we will consider only states of stress in which shear stresses are non-zero in at most
one plane. This state of stress is termed generalized plane stress. An example of generalized
plane stress in the x-y plane is shown below. Note that no shear stresses exist in the y-z or x-z
planes for this example.
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Figure 5.3: Generalized Plane Stress in x-y Plane

Principal stress is defined as the normal stress that exists on a plane (at some angle θ) where
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all shear stresses are equal to zero. In Figure 5.3 above, σzz is a principal stress since no shear
stresses are shown on the z face (the face with unit outward normal k). Since the coordinate system
is arbitrary, note that if a state of generalized plane stress exists at a point, the coordinate system
can always be rotated such that the x′-y′ stress state is as shown below in Figure 5.4

Consider a solid body such as that shown below. Suppose that we start with the state of stress
defined in x-y coordinates.
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Figure 5.4: Two-Dimensional Body with Applied Loads

Now pass a cutting plane through at point “0” which has a unit normal n that is rotated an
angle θ counter clockwise from the x-axis as shown below. Let the x′-y′ coordinate system be rotated
about the z-axis by the same angle θ so that x′ is in the direction n.
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Figure 5.5: Coordinate System for Stress Transformation
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For the above case the unit outer normal vector n, is given by

n = cos θi + sin θj (5.1)

Therefore, application of Cauchy’s formula (t(n) = n ·σ) results in the following components for t(n)

(the stress tensor is assumed to be symmetric and therefore σyx = σxy):

t(n)x
= σxx cos θ + σyx sin θ

t(n)y
= σxy cos θ + σyy sin θ (5.2)

t(n)z
= 0

However, these components are of no particular physical interest since they are neither normal nor
parallel to the plane defined by n. The components of t(n) that are normal and parallel to the plane
defined by n can be easily obtained through vector calculus. Note that the unit normal n and the
x′-axis have the same direction. The component of t(n) normal to the plane is thus σx′x′ and is
given by the dot product of t(n) with n (note: first substitute σyx = σxy in t(n)x

):

σx′x′ = t(n) · n = ((σxx cos θ + σxy sin θ)i + (σxy cos θ + σyy sin θ)j) · (cos θi + sin θj) (5.3)

= σxx cos2 θ + 2σxy sin θ cos θ + σyy sin2 θ

where the x′-y′ axes are rotated counterclockwise from the x-axes by the angle θ.
Since the x′ axis is in the direction of n, σx′x′ (stress normal to plane with unit normal n) is

often denoted as σn. Equations 5.2 and 5.3 can also be combined by writing t(n) = n · σ and
σn = σx′x′ = t(n) · n so that we have the following vector and matrix result:

σn = σx′x′ = n · σ · n =
(1×2)

[n]
(2×2)

[σ]
(2×1)

[n] (5.4)

In order to obtain the component of t(n) parallel to the plane defined by n, it is first convenient to
define the unit normal in the y′ direction, denoted n′, as follows:

n′ = k × n = − sin θi + cos θj (5.5)

The projection of t(n) on the plane n is found by taking the dot product of t(n) with n′, thus yielding
the shear stress component σx′y′ ,

σx′y′ = t(n) · n′ =⇒ (5.6)

σx′y′ = −(σxx − σyy) sin θ cos θ + σxy(cos2 θ − sin2 θ)

In the same manner, σy′y′ and σy′x′ can be determined (note: this step is not necessary):

σy′y′ = t(n′) · n′ =⇒
σy′y′ = [−(−σxx sin θ + σxy cos θ) sin θ + (−σyx sin θ + σyy cos θ) cos θ]
σy′x′ = t(n′) · n =⇒
σy′x′ = [(−σxx sin θ + σxy cos θ) cos θ + (−σyx sin θ + σyy cos θ) sin θ]

Equations 5.3 and 5.6 can now be used to obtain the normal stress, σx′x′ , and shear stress, σx′y′ , on
a plane defined by the angle θ (measured CCW from x-axis), given σxx, σyy and σxy:

Stress Transformation from x-y to x′-y′ Coordinates

σx′x′ = σxx cos2 θ + 2σxy sin θ cos θ + σyy sin2 θ (5.7)
σx′y′ = −(σxx − σyy) sin θ cos θ + σxy(cos2 θ − sin2 θ)
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Although the above equations are sufficient to perform stress transformations, they are not very
convenient. This is due to the fact that we are often interested in finding the planes defined by θ on
which σx′x′ and σx′y′ attain their maxima because failure is often initiated on these planes due to
the stresses on these planes. Mathematically, an equation for the plane of maximum (or minimum)
stress can be obtained from calculus by applying the following:

dσx′x′

dθ
= −(σxx − σyy) sin 2θ + 2σxy cos 2θ = 0 (5.8)

dσx′y′

dθ
= −2σxy sin 2θ − (σxx − σyy) cos 2θ = 0

Equations (5.8) can be solved for θ that maximizes/minimizes σx′x′ and σx′y′ . Note that one obtains
one value from each equation, i.e., θ defining the plane of maximum normal stress σx′x′ (call it θP ),
and a second θ for the maximum shear stress (call it θS). It can be shown that θS = θP ± π

4 .
Thus, the plane of maximum shear stress is always ±45◦ from the plane of maximum normal stress.
These corresponding two values of θ may then be substituted into (5.7) to obtain the maximum and
minimum values of σx′x′ and σx′y′ . Because equations (5.8) are transcendental, closed form solutions
for θ do not exist; however they can be solved numerically or graphically.

It is important to note that numerical evaluations using equations (5.7) and (5.8) must be done
with the angle θ in radians, not degrees. Furthermore, θ is positive counterclockwise from the x-axis
(normal right-hand rule for an x-y coordinate system).

In order to deal with the numerical difficulty associated with the nonlinear equations, Otto Mohr
introduced a graphical technique that is helpful in performing stress transformations. We shall now
derive this graphical technique using equations . To accomplish this, first recall the trigonometric
half angle formulas:

cos2 θ =
1 + cos 2θ

2

sin2 θ =
1 − cos 2θ

2
(5.9)

2 sin θ cos θ = sin 2θ

Substituting (5.9) into (5.7) results in

σx′x′ =
σxx + σyy

2
+

(
σxx − σyy

2

)
cos 2θ + σxy sin 2θ (5.10)

σx′y′ = −
(

σxx − σyy

2

)
sin 2θ + σxy cos 2θ (5.11)

Otto Mohr (1870) discovered that equations (5.10) and (5.11) can be combined by squaring each side
of the above two equations and adding the results together to produce the principle of Mohr’s
Circle represented by the equation:

[
σxx −

(
σxx + σyy

2

)]2

+ σ2
x′y′ =

(
σxx − σyy

2

)2

+ σ2
xy (5.12)

Recall that the equation of a circle in x-y space is given by

[x − a]2 + [y − b]2 = r2 (5.13)

where a and b are the x and y intercepts of the center of the circle, respectively, and r is the radius,
as shown below:
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Figure 5.6: Circle Used in Mohr’s Analogy

Thus by analogy of (5.12) to (5.13), we may effect the following transformation of variables:

x → σx′x′ (normal stress)
y → σx′y′ = (shear stress)

a → σxx + σyy

2
= (center of circle) (5.14)

b → 0 =

r →

√(
σxx − σyy

2

)2

+ σ2
xy = (radius of circle)

thereby producing the following diagram, denoted as Mohr’s Circle:
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Figure 5.7: Mohr’s Circle Parameters
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To plot Mohr’s circle given stresses σxx, σyy, σxy in the x-y coordinate system:

1. Find the center of Mohr’s circle; point A:
(

σxx+σyy

2 , 0
)

Note: σA = σxx+σyy

2

2. Plot stresses on x-face as point B (σxx,−σxy ) and label as x-face. Note that point B
corresponds to θ = 0◦ in x-y plane.

3. Plot stresses on y-face as point C (σyy, σxy ) and label as y-face. Note that point C
corresponds to θ = 90◦ in x-y plane.

4. Draw the circle. We note that while the x-face (θ = 0◦) and the y-face (θ = 90◦) are
separated by 90◦ in the real world x-y coordinates, they appear as point B and C, respectively,
in Mohr’s Circle and are 180◦ apart on Mohr’s Circle. Consequently, angles on Mohr’s Circle
are twice that of the real x-y world. It is also important to note that θ = 0◦ in the real world
corresponds to the x-axis; however, in Mohr’s Circle the point θ = 0◦ starts from the line AB
since point B represents the stresses on the x-face θ = 0◦). θ is positive CCW in both cases.

5. Label principal stresses and maximum shear stress. Note: σP = σA±r and τSmax = ±r.
There are two principal stresses σP1 and σP2 (planes where shear stress is zero) and two
maximum shear stresses τSmax = ±r (top and bottom of circle). Note that σP1 and σP2 are
180◦ apart on Mohr’s circle, but 90◦ in the real world. σP1 is the normal stress in the x′

direction where x′ is rotated by the angle θ (CCW) from the x-axis. σP2 is in the y′ direction.

6. Identify the relative orientation between x-face (B) and the principal planes. Note
that point B corresponds to the stresses on the x-face, i.e. θ = 0◦ in the real world. For
example, in the above 2θP = tan−1

(
σxy

σxx−σA

)
CCW from the x-face (from line A-B on Mohr’s

Circle). Note: the writing of a specific formula is discouraged. It is far simpler (and usually
less mistakes) to look at Mohr’s circle and apply trigonometry to calculate the angle.

7. Identify the relative orientation between x-face (B) and the maximum shear planes.
From Figure 5.7, 2θP + 2θS = 90◦. Thus θS = 45◦ − θP . From Figure 5.7, it easier to identify
the principal shear stress planes as being −45◦ (real world) from the principal normal stress
plane (point B, bottom of circle) and +45◦ from the principal normal stress plane (top of
circle). Note that the plane of max shear stress will generally have non-zero normal stress!

8. Draw Free Body Diagrams with the x-face, principal plane, and the two maximum
shear planes.

Example 5-1

Consider the plane stress state given by the stress tensor:

[σ] =
[

50 10
10 20

]
ksi

1. Determine center of circle, point A.

σA =
σxx + σyy

2
=

50 + 20
2

= 35 ksi

2. Determine point B, x-face → ( σxx,−σxy ) = ( 50,−10 )

3. Determine point C, y-face → ( σyy, σxy ) = ( 20,+10 )

4. Draw Mohr’s circle:
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Figure 5.9:

5. Compute principal stresses and max shear stress.

r =

√(
σxx − σyy

2

)2

+ σ2
xy =

√(
50 − 20

2

)2

+ 102 = 18.03 ksi

σP = σA ± r = 35 ± 18.03

∴ σP1 = 35 + 18.03 = 53.03 ksi
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σP2 = 35 − 18.03 = 16.97 ksi

τSmax = ±r = ±18.03 ksi

Note that we have two principal stresses: σP1 and σP2. These are located 180◦ on Mohr’s
circle, but 90◦ in the real world. In relation to the stress transformation equations (5.7), σP1

in the normal stress in x′-axis direction (which is oriented at an angle θP to the x-axis) and
σP2 is the normal stress in the y′-axis direction. The planes of maximum shear occur 45◦ (real
world) from the planes of principal stress.

Plot the principal stresses and max shear stresses on Mohr’s Circle:
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1 53.03P ksiσ =2 16.97P ksiσ =

max
18.03S ksi=τ 

max
18.03S ksi=  τ 

2 Pθ 

2 Sθ 

(35,0)

(35,18.03)

(35, 18.03) 

Figure 5.10:

6. Identify orientation of planes for principal stresses relative to x-face plane.

2θP = tan−1

(
σxy

σxx − σA

)
= tan−1

(
10

50 − 35

)
= 33.7 deg

∴ θP = 16.85 deg CCW from x-face

The plane for the second principal stress σP2 is (θP + 90) deg CCW from x-face (real world).
Note: In the above calculation, a formula was written down and used for 2θP . This is dis-
couraged. It is far simpler (and usually less mistakes) to look at Mohr’s circle and apply
trigonometry to calculate the angles.

7. Identify orientation of planes for maximum shear stress (bottom of circle) relative to x-face
plane.

2θS = 90 deg − 2θP = 90 − 33.7 = 56.3 deg
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∴ θS = 28.15 deg CW from the x-face

OR, plane of max shear stress (bottom of circle) is 45◦ CW in the real world from the principal
stress plane with σP1.

Note: |σP | + |σS | = 45 deg (always!)

Note that the plane of max shear stress will generally have non-zero normal stress! In this
case, the plane of max shear stress has a normal stress σn = 35 ksi.

8. Draw three free bodies: with the x-y stresses, with the principal stresses, and with the max
shear stresses.
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ksi
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16.85o

28.15o

o

Figure 5.11:

Note the following:
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• To obtain the orientation for principal stresses, the x-face has been rotated 16.85 deg CCW in
the real world (33.7 deg on Mohr’s circle).

• To obtain the orientation for maximum shear stresses, the x-face has been rotated 28.15 deg
CW in the real world (56.3 deg on Mohr’s circle), OR, equivalently a rotation of 45 deg CW
in the real world from the principal stress plane.

Example 5-2

Consider the same plane stress state given in Example 5-1:

50 ksi

20 ksi

10 ksi

10 ksi

20 ksi

50 ksi

Figure 5.12:

[σ] =
[

50 10
10 20

]
ksi

Values of principal stress and maximum shear stress obtain in Example 5-1 by Mohr’s circle must
be identical to what would be obtained by using the stress transformation equations (5.7). This is
true because Mohr’s circle is simply a graphical representation of equations (5.7). Use the stress
transformations to determine the normal stress and shear stress for values of θ = 16.85◦, 106.85◦,
−28.15◦ and verify that they correspond to the principal stress and maximum shear stress values
obtained in Example 5-1.

For θ = 16.85◦ (same as 33.7◦ on Mohr’s circle from x-face, should equal σP1)

σx′x′ = σxx cos2 θ + 2σxy sin θ cos θ + σyy sin2 θ

= (50 ksi) cos2 16.85◦ + 2(10 ksi) sin 16.85◦ cos 16.85◦ + (20 ksi) sin2 16.85◦ = 53.03 ksi
σx′y′ = −(σxx − σyy) sin θ cos θ + σxy(cos2 θ − sin2 θ)

= −(50 ksi − 20 ksi) sin 16.85◦ cos 16.85◦ + 10 ksi(cos2 16.85◦ − sin2 16.85◦) = 0 ksi

For θ = 106.85◦ (same as 213.7◦ on Mohr’s circle from x-face, should equal σP2)

σx′x′ = σxx cos2 θ + 2σxy sin θ cos θ + σyy sin2 θ

= (50 ksi) cos2 106.85◦ + 2(10 ksi) sin 106.85◦ cos 106.85◦ + (20 ksi) sin2 106.85◦ = 16.97 ksi
σx′y′ = −(σxx − σyy) sin θ cos θ + σxy(cos2 θ − sin2 θ)

= −(50 ksi − 20 ksi) sin 106.85◦ cos 106.85◦ + 10 ksi(cos2 106.85◦ − sin2 106.85◦) = 0 ksi

For θ = −28.15◦ (same as −56.3◦ on Mohr’s circle from x-face, should equal τmax bottom of circle)

σx′x′ = (50 ksi) cos2(−28.15◦) + 2(10 ksi) sin(−28.15◦) cos(−28.15◦) + (20 ksi) sin2(−28.15◦) = 35 ksi
σx′y′ = −(50 ksi − 20 ksi) sin(−28.15◦) cos(−28.15◦) + 10 ksi(cos2(−28.15◦) − sin2(−28.15◦)) = 18.03 ksi
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For θ = 40◦ (same as 80◦ on Mohr’s circle from x-face)
σx′x′ = 47.45 ksi, σx′y′ = −13.04 ksi (real world values). From, Mohr’s circle in Example 5-1,

one obtains the same result. ⇐ Student, you should verify this! Note that this corresponds
to a point 80 degrees CCW from the x-face on Mohr’s circle (or 46.3 degrees above the σn axis on
Mohr’s circle ( 80,−33.7 )). Why is the sign negative on the value of σx′y′ calculated from the stress
transformation equation? Remember that when you plot the x-face stress, a positive σxy (real world)
is plotted as −σxy (point B on Mohr’s circle). Thus, a positive value of shear stress on Mohr’s circle
as we have for this case (θ = 80◦ CCW on Mohr’s circle) translates to a negative shear stress in the
real world.
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10 ksi

20 ksi

50 ksi

13.04 ksi

47.45 ksi

40o

47.45 ksi
22.55 ksi

22.55 ksi

13.04 ksi13.04 ksi

40o θ =

' '( )sx yσ τ   

' '( )nx xσ σ   

(50,-10)

x - face

(20,10)

y - face

1 53.03P ksiσ =2 16.97P ksiσ =

max
18.03S ksi=τ 

max
18.03S ksi=  τ 

(35,0)

(35,18.03)

80

47.45,13.04

35, 18.03 

Figure 5.13:
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Example 5-3

Consider the plane stress state given by the stress tensor:

50 ksi

20 ksi

10 ksi

10 ksi

20 ksi

50 ksi

Figure 5.14:

[σ] =
[

50 −10
−10 −20

]
ksi

1. Determine center of circle, point A.

σA =
σxx + σyy

2
=

50 + (−20)
2

= 15 ksi

2. Determine point B, x-face → ( σxx,−σxy ) = ( 50,−(−10) ) = ( 50, 10 )

3. Determine point C, y-face → ( σyy, σxy ) = (−20,−10 )

4. Draw Mohr’s circle:

5. Compute principal stresses and max shear stress.

r =

√(
σxx − σyy

2

)2

+ σ2
xy =

√(
50 − (−20)

2

)2

+ (−10)2 = 36.4 ksi

σP = σA ± r = 15 ± 36.4

∴ σP1 = 15 + 36.4 = 51.4 ksi

σP2 = 15 − 36.4 = −21.4 ksi

τSmax = ±r = ±36.4 ksi

Note that we have two principal stresses: σP1 and σP2. These are located 180◦ on Mohr’s
circle, but 90◦ in the real world. In relation to the stress transformation equations (5.7), σP1

in the normal stress in x′-axis direction (which is oriented at an angle θP to the x-axis) and
σP2 is the normal stress in the y′-axis direction. The planes of maximum shear occur 45◦ (real
world) from the planes of principal stress.

Plot the principal stresses and max shear stresses on Mohr’s Circle:
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' '( )sx yσ τ   

' '( )nx xσ σ   
(50,10)

x - face

(-20, -10)

y - face

(15,0)

Figure 5.15:

' '( )sx yσ τ   

' '( )nx xσ σ   
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x - face

(-20, -10)

y - face

(15,0)

1 51.4P ksiσ =

2 21.4P ksiσ =  

(15,36.4)

(15, 36.4) 

max
36.4S ksi=  τ 

max
36.4S ksi=τ 

15.95

74.05

Figure 5.16:

6. Identify orientation of planes for principal stresses relative to x-face plane.

2θP = tan−1

(
10
35

)
= 15.95 deg
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∴ θP = 7.97 deg CW from x-face

The plane for the second principal stress σP2 is (θP + 90)deg CCW from x-face (real world).

7. Identify orientation of planes for maximum shear stress (bottom of circle) relative to x-face
plane.

2θS = 90 deg − 2θP = 90 − 15.95 = 74.05 deg

∴ θS = 37.03 deg CCW from the x-face

or, plane of max shear stress (top of circle) is 45◦ CCW from plane with σP1. Note that the
plane of max shear stress will generally have non-zero normal stress! In this case, the plane of
max shear stress has a normal stress σn = 15 ksi.

8. Draw three free bodies: with the x-y stresses, with the principal stresses, and with the max
shear stresses.

Note the following:

• To obtain the orientation for principal stresses, the x-face has been rotated 7.97 deg CW in
the real world (15.95 deg on Mohr’s circle).

• To obtain the orientation for maximum shear stresses, the x-face has been rotated 37.03 deg
CCW in the real world (74.05 deg on Mohr’s circle), or, equivalently a rotation of 45 deg CCW
in the real world from the principal stress plane.

5.2 Generalized Plane Stress and Principal Stresses

In the x-y plane, any set of stresses ( σxx, σyy, σxy ) can be represented by a Mohr’s Circle as was
shown previously and as shown in Figure 5.18 below (the dark circle). Corresponding to these x-y
stresses, there are two principal stresses ( σP1, σP2 ) which also define the same Mohr’s Circle with
coordinates of (σP1, 0 ) and (σP2, 0 ). Thus, the circle is (or can be) defined by any two principal
stresses as they form the diameter of the circle. It follows that the Mohr’s circle for the x-z plane
would also be formed by the principal stresses in the x-z plane, in this case σP1 and σP3. Similarly,
Mohr’s circle in the y-z plane is defined by σP2 and σP3. We can draw all three of these circles on
one diagram as shown below.

If the value of the third principal stress is less than the second, or greater than the first, we
obtain a larger circle than the circle obtain for the x-y plane and hence the maximum shear stress
is also larger. For the case in the figure above, even if the out-of-plane normal stress σzz = 0, one
obtains a larger maximum shear stress than was obtained from the x-y plane.

For a general stress tensor (3-D), it can be shown that the principal stresses are defined by the
following eigenvalue problem:

|[σ] − σP [I]| = 0

∣∣∣∣∣∣
(σxx − σP ) σxy σxz

σyx (σyy − σP ) σyz

σzx σzy (σzz − σP )

∣∣∣∣∣∣ = 0

After the 9 components of stress ( σxx, σxy, . . . , σzz ) are substituted into the above, the determi-
nant can be expanded to obtain a cubic polynomial in σP which will yield the three principal stress

values σP1, σP2, σP3. For 2-D (x-y plane), the determinant reduces to
∣∣∣∣ (σxx − σP ) σxy

σyx (σyy − σP )

∣∣∣∣ =

0 which results in two principal stress values σP1, σP2.
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50 ksi

20 ksi

10 ksi

10 ksi

20 ksi

50 ksi

15 ksi

45

36.4 ksi

principal stress
planes

maximum shear
stress planes

7.97

15 ksi

15 ksi 15 ksi

36.4 ksi

37.03

21.4 ksi

51.4 ksi

51.4 ksi

21.4 ksi

Figure 5.17:

Example 5-4

Same as Example 5-1 except a z component of stress is added to make the problem a generalized
plane stress problem. The generalized plane stress state is given by the stress tensor:
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r

' ' ( )x y sσ τ  
 

,( )xx xyσ σ  − 

P3σ 
P2σ 

P2θ P1σ ' ' ( )x x nσ σ  

S2θ 

( , 0)zzσ 

Smax
τ 

Smax
( )generalized plane stressτ 

( , )xyyyσ σ  

Figure 5.18: Mohr’s Circle for Generalized Plane Stress (plane stress in x-y plane)

[σ] =


 50 10 0

10 20 0
0 0 −10


 ksi

Steps 1-7 will be identical to Example 5-1 for the x-y plane (since both examples have exactly
the same stress components in the x-y plane). Hence, for the x-y plane we obtain Mohr’s circle:

To complete the solution we note that there are no shear stresses in the z plane and hence σzz

is automatically a principal stress. Thus, σP3 = σzz = −10. Adding the third principal stress to
Mohr’s circle, we obtain:

Hence, the principal stresses are σP = −10, 16.97, 53.03 ksi. The maximum shear stress is the
radius of the largest Mohr’s circle. Thus, τSmax = 53.03+10

2 = 31.52 ksi. In order to “change” circles,
we need to be in the principal orientation, because this is the same on all three circles. The sketches
below illustrate this “changing” process. Note that when changing views, there is NOT a change in
the stresses, only in the way they are viewed. If we had rotated 45◦ off the principal plane P1 − P2,
we would have still been on the smaller circle and therefore could never attain the maximum shear
stress.
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' '( )sx yσ τ  

' '( )nx xσ σ   

(50, -10)

x - face

(20,10)

y - face

1 53.03P ksiσ =2 16.97P ksiσ =

max
18.03S ksi=τ 

max
18.03S ksi=  τ 

2 Sθ 

(35,0)

(35,18.03)

(35, 18.03) 

16.85

Figure 5.19:

' '( )sx yσ τ   

' '( )nx xσ σ   

(50,-10)

x- face

(20,10)

y -face

1 53.03P ksiσ =2 16.97P ksiσ =

2 Sθ 

(35,0)

(35,18.03)

(35, 18.03) 

16.853 10P ksiσ =  

max
31.52S ksi=τ 

max
31.52S ksi=  τ 

Figure 5.20:

Example 5-5

Given the stress state below, use Mohr’s circle to find the principal planes and maximum shear
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50 ksi

20 ksi

10
ksi

10 ksi

20 ksi

50 ksi

45

31.52 ksi

principal stress
planes

maximum shear
stress planes

21.515 ksi

16.97 ksi

53.03 ksi

53.03 ksi

16.97 ksi

-10 ksi

8.425o

-10 ksi

AA

Vie w AA:

16.97 ksi

53.03 ksi

53.03 ksi

10 ksi10 ksi

16.97 ksi

21.515 ksi
21.515 ksi

21.515 ksi

principal stress
planes

z

x

y

1P

2P

1P

2P
3P

3 ( )P in z direction

Figure 5.21:

stresses.
Uniaxial Stress

[σ] =


 σxx 0 0

0 0 0
0 0 0






124 CHAPTER 5. STRESS TRANSFORMATION AND MOHR’S CIRCLE

5 MPa

y

x

z

B

C

2.5

-facex

-face (0,0)y

C B

2.5

2.5 45

σx
′
x
′

σx′y′

σx′x′ = σn = 2.5

σx′y′ = τ s = 2.5

σxx

Figure 5.22:

• Maximum shear traction at 45◦ from x-axis

• Maximum normal traction along x-axis

Example 5-6

Given: The state of stress at each point in a bar can be represented by the stress tensor [σ]:

[σ] =


 σxx 0 0

0 0 0
0 0 0


 =


 10 kN

m2 0 0
0 0 0
0 0 0




x

y

z

Figure 5.23:

Required :

a) Construct Mohr’s Circle for the given stress tensor.

b) What are the traction vectors experienced each face of the cube?
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c) What are the normal and shear components of these traction vectors?

d) What is the maximum shear stress experienced by the bar?

e) What is the orientation of the surface that experiences this maximum shear stress?

f) What is the maximum normal stress experienced by the bar?

Solution

a) Use the steps mentioned in the above text.

' 'x y

Maximum Normal
x-face
B (10,0)

Maximum Shear
(5,5)

A (5,0)

Maximum Normal
y-face

C (0,0)

(5,-5)
Maximum Shear

' 'x xσ 

σ

Figure 5.24:

b) ti = 10i
tj = 0
tk = 0

c) σxx = 10
σxy = σyz = σzz = σyy = 0

d) 5 kN
m2 at the points ( 5, 5 ) and ( 5,−5 )

e) The surface is tilted at 45◦ to the x-axis (90◦ in Mohr space is 45◦ in real space).

f) 10 kN
m2 at the points ( 10, 0 ) and ( 0, 0 )

Example 5-7

Given: 2-D Stress State – Ignore the z components of stress.

[σ] =


 σxx σxy 0

σyx σyy 0
0 0 0


 =


 6 2 0

2 6 0
0 0 0


 MPa

Required :

a) Construct Mohr’s Circle for the given stress tensor.

b) What is the orientation of the surface when the maximum shear stress is obtained?

c) What is the maximum shear stress experienced by the bar?
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x

y

z

σxx = 6

σxy = 2σyx = 2

σyy = 6

Figure 5.25:

Maximum normal

Maximum Shear
x-face
B (6,2)

C (6,-2)
y-face
Maximum Shear

Maximum Normal

' 'x xσ 
A (6,0)

' 'x yσ 

Figure 5.26:

Solution

a)

b) 0◦

c) 2 MPa at points ( 6, 2 ) and ( 6,−2 )
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Deep Thought  
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5.3 Questions

5.1 Describe in your own words the meaning of principal stress.

5.2 What is the angle between the planes of principal stress and maximum shear stress in a body?
Why is it that way?

5.3 What is the main point of Mohr’s circle?

5.4 What does the term t(n) in Caucy’s formula physically represent?

5.5 When considering Mohr’s circle, explain physically the stress state defined by the point on
Mohr’s Circle that lies on the horizontal axis.

5.4 Problems

5.6 GIVEN : A material point is known to be in a state of generalized plane stress as given by:

[σ] =


 4 −2 0

−2 −5 0
0 0 −3


 MPa

REQUIRED : Draw all important sketches, showing planes of maximum shear as well as prin-
cipal planes.

5.7 GIVEN : The stress tensor as follows:

[σ] =


 3 0 0

0 19 0
0 0 0


 ksi

REQUIRED :

(a) compute the three principal stresses and maximum shear stress;

(b) indicate the maximum shear direction.

5.8 The state of stress at a certain point of a body is given by

[σ] =


 1 2 0

2 7 0
0 0 0


 MPa

Determine on which planes:

i) principal stresses occur

ii) shearing stress is greatest.

5.9

[σ] =


 σxx 0 0

0 0 0
0 0 0


 psi

Find maximum shear and normal stresses.

5.10 (a) What is a principal plane?
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725 psi

y

x

z

σ xx

Problem 5.9 

(b) Are the following stress tensors generalized plane stress cases? Answer in yes/no.

i)


 1 0 −3

0 2 0
−3 0 −5


 ii)


 4 2 0

2 −3 1
0 1 2




iii)


 1 0 0

0 0 −1
0 −1 6


 iv)


 −2 0 2

0 3 7
2 7 5




5.11 GIVEN :

[σ] =


 2 0 0

0 −8 0
0 0 10


 ksi

(a) Write out the three principal stresses and compute the maximum shear stress.

(b) What is the maximum shear direction and on what plane is it acting in?

5.12 GIVEN :

[σ] =
[

−5 −5
−5 5

]
MPa

(a) Draw the corresponding stress cube.

(b) Construct the three Mohr’s circles for the given stress state.

(c) Compute the two principal stresses and maximum shear stress.

(d) Using the formula given below, determine the normal stress, which acts upon a surface
corresponding to a 30◦ clockwise rotation of the x-face.

σn =
(

σxx − σyy

2

)
cos 2θ + σxy sin 2θ +

(
σxx + σyy

2

)

5.13 GIVEN : A material in the following state of plane stress:

[σ] =


 −2500 0 0

0 0 0
0 0 0


 ksi

REQUIRED : Draw all important sketches, showing planes of maximum shear stress as well as
principal planes.
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5.14 Using the following 2-D stress state at a point in a body,

[σ] =


 50 0 0

0 −50 0
0 0 0


 MPa

Find:

a) tn for n = i, n = j, and n = 1
2

(√
3i + j

)
b) If the coordinate axes were rotated 45 degrees clockwise, to x′-y′, solve for the new values

of σx′x′ , σy′y′ , σx′y′ . Use Cauchy’s Formula.

c) Construct the three Mohr’s circles for the given stress state.

5.15 The state of stress at a certain point of a body is given by

[σ] =


 3 −1 4

−1 2 0
4 0 −2


 ksi

i) Find the traction vector on the plane whose normal is in the direction i + 2j + 2k

ii) Find the traction vector on the plane whose normal is in the direction 4i − 3j + k

iii) Determine the normal and shearing components of the traction vector on the above planes.

5.16 For a stress state defined by: σxx = 10 MPa, σxy = σyx = 40 MPa, σyy = 50 MPa. Define:

a) the value of the Principal Stress

b) the maximum Shear Stress and corresponding Normal Stress

5.17 GIVEN : A thin-walled cylindrical pressure vessel is subjected to internal pressure, p

t = wall thickness
r = cylinder radius

p = 500 psi r = 10in t = 0.25 in

x
θ

pr

t

pr

t2

Problem 5.17 

It can It can be shown that the stress state is given by a hoop (circumferential) stress σθθ = pr
t

and an axial stress (along the axis of pressure vessel) of σxx = pr
2t :

REQUIRED : Draw all important sketches, showing planes of maximum shear as well as prin-
cipal planes.

5.18 GIVEN : Suppose that the pressure vessel of 5.17 is also subjected to an end torque, Mt.

The stress state be shown by:

REQURIED : Draw all important sketches, showing planes of maximum shear as well as prin-
cipal planes.
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Mt

Mt = 1 000 000, , lb - in

pr

t

pr

t2

M r

J
t

J r t= 2 3π 

Problem 5.18 

5.19 GIVEN : The following stress tensor in Cartesian coordinates

[σ] =


 5 −2 0

−2 −1 0
0 0 −3


 MPa

REQUIRED :

a) Sketch the stress cube representation

b) Construct the three Mohr’s circles

c) Determine the traction vectors: t(i), t(j), t(k)

d) Make a sketch of t(i), t(j), t(k) acting on the appropriate plane(s)

5.20 GIVEN : A material point is known to be in a state of generalized plane stress as given by:

[σ] =


 −1 −2 0

−2 3 0
0 0 4


 ksi

REQUIRED :

1) Construct the three Mohr’s circles.

2) Find the three principal stresses and the maximum shear stress.

3) Draw all important sketches, showing planes of maximum shear as well as principal planes
with the associated coordinate rotations labeled properly.

5.21 GIVEN : The state of stress at a certain point on a body is given by:

a) [σ] =


 4 2 0

2 −3 1
0 1 2




b) [σ] =


 −2 0 2

0 3 7
2 7 5




REQUIRED : Determine for both a) and b) on which of the three coordinate planes:

1) Normal stress is greatest

2) Shear stress is greatest
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5.22 Use Cauchy’s Formula, tn = σ · n, for the following stress tensor

[σ] =


 20 5 0

5 −6 0
0 0 0


 ksi n = cos θi + sin θj + 0k

REQUIRED :

a) The plane at which the shear stress equals zero, i.e., the angle in the unit normal which
describes the plane for the following stress tensor.

b) The normal stress on the face described by the plane found in part a). What is this
normal stress called?

c) At what angle is the plane of maximum shear stress from the principal stress plane.

d) What is the value of the maximum shear stress for the stress tensor given above.

5.23 GIVEN : The state of stress at each point in a bar can be represented by the stress tensor [σ]:

[σ] =


 σxx 0 0

0 0 0
0 0 0


 =


 8 kN

m2 0 0
0 0 0
0 0 0




REQUIRED :

σxx = 8
[

kN
m2

]σxxx

y

z

Problem 5.23 

a) What are the traction vectors experienced by faces in other orientations?

b) What are the normal and shear components of these traction vectors?

c) What is the maximum shear stress experienced by the bar?

d) What is the orientation of the surface that experiences this maximum shear stress?

e) What is the maximum normal stress experienced by the bar?

5.24 GIVEN :

[σ] =


 σxx σxy 0

σyx σyy 0
0 0 0


 =


 3 1 0

1 3 0
0 0 0


 MPa

REQUIRED :

a) Construct Mohr’s circle for the given stress tensor.

b) What is the orientation of the surface when the maximum shear stress is obtained?

c) What is the maximum shear stress experienced by the bar?
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x

y

z

σxx = 3

σxy = 1σyx = 1

σyy = 3

Problem 5.24 

5.25 The state of stress at a certain point of a body is given by

[σ] =


 −1 −2 0

−2 3 0
0 0 4


 MPa

a) Calculate the values of the corresponding principal stresses.

b) Indicate the magnitude of the maximum shear stress in the x-y plane.

c) Draw the x-y plane including 1) principal stresses and 2) max shear stress. In each case,
indicate the magnitude of all stresses and the angle the element is rotated relative to the
original x-face.

d) Determine the magnitude of the maximum shear stress considering all planes.

e) If the material’s failure criteria is given by a 6 MPa normal stress and 3 MPa shear stress.
Indicate if the material will fail under the applied load and if so, whether it is due to
shear or normal stress.

5.26 Repeat problem 5.25 for:

[σ] =


 5 3 0

3 2 0
0 0 0


 MPa

Remember to consider the problem as a case of Generalized Plane Stress.

5.27 GIVEN : stress tensors as follows

(1)


 5 0 0

0 2 0
0 0 0


 (2)


 4 0 0

0 4 0
0 0 4


 (3)


 3 −3 0

−3 0 0
0 0 −2




REQUIRED :

(a) sketch the stress cube aligned with the coordinate axes (Cartesian coordinate system)
and the values of all shear and normal stresses on its surfaces;

(b) construct the three Mohr’s circles for the stress state;

(c) sketch a stress cube oriented so that it is aligned with the principal axes and indicate its
angle relative to the x-face and the principal stresses which act upon it;

(d) determine the maximum shear and normal stresses experienced by the material which is
subjected to this stress state and for each of these stresses, indicate the orientation of the
surface which experiences this stress;
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(e) determine the shear and normal stresses that act upon a surface which corresponding to
a 30◦ counter-clockwise rotation of the x-face about z-axis.

5.28 For the given simply supported beam as pictured below, with length L = 10 m, thickness
h = 0.1 m, cross sectional area A = 0.01 m2 and a distributed load Po = 10 kN

m , a stress
analysis indicates a stress of σxx = −2 MPa, σxy = −1 MPa, σyy = 4 MPa at x = 5 m,
y = 0.05 m. Repeat the stress analysis described in problem 5.27.

Po

h
x

y

Problem 5.28

L

5.29 Derive an equation for σy′y′ by hand.

5.30 Using Scientific Workplace:

a) evaluate σx′x′ , σy′y′ , σx′y′ , σy′x′

b) verify that σx′y′ = σy′x′ (assume σxy = σyx)
c) Graph σx′x′(θ), σx′y′(θ) for 0 < θ < 2π for the two cases below and discuss your findings.

5

10

Problem 5.30

5.31 GIVEN : REQUIRED :

a) Find the stress tensor, [σ].
b) Find the principal stresses.
c) Find the principal direction.

5.32 GIVEN : A thin plate is loaded on its four faces so that it develops the following stress state.

[σ] =


 7

(
x2y − 2

3y2
)

−7xy2 0
−7xy2 7

3y3 0
0 0 0


 MPa
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10 MPa

5 MPa

y

x
3 MPa

Problem 5.31

xxσ 

h
2

x

yyσ y

L

σ xy

h
2

Problem 5.32

REQUIRED :

1) Verify that the conservation of angular momentum and linear momentum are satisfied
under static conditions, in the absence of body forces, at every point (x, y ) on the plate.

2) Find the components of the traction vector applied on the faces: x = 0, x = L, y = h
2 ,

y = −h
2

5.33 For the following structure and the applied load F, the stress state in a rectangular Cartesian
coordinate system at point P is given by the specified stress tensor [σ].

[σ] =


 5 2 0

2 −1 0
0 0 −3


 MPa

a) Sketch the stress cube representation. Label all the components, planes and points of
interest.

b) Determine the values of the Principal Stresses.

c) Specify the required rotation (in terms of the normal to the x-face) in order to achieve
maximum shear stress in the xy face. Make a sketch of the xy face showing the components
of stress and the angle rotated.
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F

P
x

y

z

Problem 5.33

d) According to the material’s properties, the failure criteria is given by a maximum stress
of 4 MPa for shear and 6 MPa for normal stress. Predict if the material will fail due to
the applied load. Why?


