
Chapter 7

HEAT TRANSFER
APPLICATIONS IN SOLIDS

Figure 7.1:

7.1 Problem Solving Procedure

This chapter will consider the application and solution of the heat transfer equation for a solid.
Before continuing, it is instructive to introduce the problem solving method that will be used. This
method includes the following components:

1. Conservation of Thermal Energy equation:

ρĈ
∂T

∂t
= −∇ · q + ρΦ (7.1)

2. Constitutive equation - Fourier’s Law:

q = −k∇T (7.2)

3. Boundary and initial conditions for the particular problem. These may be: specified temper-
ature or specified heat flux
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152 CHAPTER 7. HEAT TRANSFER APPLICATIONS IN SOLIDS

It is to be noted that this solution procedure and equations (7.1) and (7.2) are valid for any coordinate
system. In this chapter, problems in Cartesian and cylindrical coordinates will be considered. The
general conservation of energy equation is a partial differential equation and its solution is given by
T = T ( x, y, z, t ) in Cartesian coordinates. The solution of partial differential equations is beyond
the scope of this textbook. Hence, applications will be selected wherein the solution requires only
the solution of an ordinary differential equation. For example, simplified cases include steady state
(∂T

∂t = 0) and 1-D heat flow in x direction with constant k (∇T = dT
dx , ∇ · q = −k d2T

dx2 ). For the
steady-state 1-D heat flow in a solid with constant k, the partial differential equation becomes:

k
d2T

dx2
= −ρΦ (7.3)

To establish a better understanding of the conservation of thermal energy equation for solids, let
us review the derivation for 1-D and 2-D. First assume the 1-D heat flow in the x-direction only
through a cross-sectional area Ax, shown schematically in the figure below.

0 x x + ∆ x

|x x
q |x x x

q
+ ∆  

Control
Volume

( 0)yinsulated q =

( 0)yinsulated q =

Figure 7.2: Conservation of Thermal Energy for 1-D Solid

To assume 1-D heat flow, the prismatic solid bar of cross-sectional area Ax above is insulated at
its lateral surfaces so that heat flows only in the x direction. The accumulation of thermal energy
in the system (infinitesimal control volume) is balanced by the net flow of thermal energy into the
system: [(

ρĈT
)∣∣∣

t+∆t
−

(
ρĈT

)∣∣∣
t

]
Ax∆x = qx |xAx∆t − qx |x+∆xAx∆t + ρΦAx∆x∆t (7.4)

Assuming ρ and C independent of time, dividing by Ax∆x∆t and taking the limit as ∆x → 0 and
∆t → 0, we have from the above equation:

ρĈ
∂T

∂t
= −∂qx

∂x
+ ρΦ (7.5)

Note that there are two unknown quantities, T ( x, t ) and qx(x, t ) in the above equation. The
conservation of thermal energy for a solid in 2-D can similarly be derived by assuming zero heat
flow in the z-direction. Assume the thickness of the slab is L in the z direction.

[(
ρĈT

)∣∣∣
t+∆t

−
(
ρĈT

)∣∣∣
t

]
∆x∆yL =

(
qx|x − qx|x+∆x

)
∆yL∆t (7.6)

+
(

qy|y − qy|y+∆y

)
∆xL∆t + ρΦ∆x∆yL∆t

Dividing by ∆x∆yL∆t and taking the limit as ∆x, ∆z and ∆t → 0, one obtains the conservation
of thermal energy for a solid in 2-D:
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Figure 7.3: Conservation of Thermal Energy for 2-D Solid

ρĈ
∂T

∂t
= −∂qx

∂x
− ∂qy

∂y
+ ρΦ (7.7)

The above differential equation has T (x, y, t ), qx( x, y ), and qy(x, y, t ) as unknown functions,
assuming that ρ, C and Φ are given. Similarly, the 3-D conservation of thermal energy equation can
be obtained with an explicit evaluation in Cartesian coordinates

ρĈ
∂T

∂t
= −∂qx

∂x
− ∂qy

∂y
− ∂qz

∂z
+ ρΦ (7.8)

or the vector form shown in Equation (7.1). Note that now there are four unknown functions,
T (x, y, z, t ), qx( x, y, z, t ), qy( x, y, z, t ), qz(x, y, z, t ) to be found from only one equation. There are
no additional conservation laws available to use to determine the unknown functions. Before further
discussion, we will redraw the control volume element of Figure (7.3) in order to make clear the
reasoning behind the heat flux components.

To reduce the number of unknowns in equation 7.7 we have introduced Fourier’s law of heat
conduction, which has the form:

(1-D): qx = −k
∂T (x, t )

∂x

(2-D): qx = −k
∂T (x, y, t )

∂x
, qy = −k

∂T ( x, y, t )
∂y

(7.9)

(3-D): qx = −k
∂T (x, y, z, t )

∂x
, qy = −k

∂T (x, y, z, t )
∂y

, qz = −k
∂T (x, y, z, t )

∂z

The quantity k is a material property called the coefficient of thermal conduction. When Fourier’s
Law is substituted into equations (7.5), (7.7), and (7.8), the conservation of thermal energy for solids
reduces to:
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Heat flux through x-face leaving the system: q · i = qx|x+∆x

Heat flux through −x-face leaving the system: q· (−i) = − qx|x
Heat flux through y-face leaving the system: q· (−j) = − qy|y
Heat flux through −y-face leaving the system: q· (j) = qy|y+∆y

Figure 7.4: Infinitesimal Control Volume Element for 2-D Heat Transfer

(1-D): ρĈ
∂T

∂t
= k

∂2T

∂x2
+ ρΦ

(2-D): ρĈ
∂T

∂t
= k

∂2T

∂x2
+ k

∂2T

∂y2
+ ρΦ (7.10)

(3-D): ρĈ
∂T

∂t
= k

∂2T

∂x2
+ k

∂2T

∂y2
+ k

∂2T

∂z2
+ ρΦ

where k is assumed to be constant. In each equation (7.10) there is only one unknown function
T (x, t ) for 1-D, T ( x, y, t ) for 2-D, and T (x, y, z, t ) for 3-D. The material properties ρ and C, and
the heat source term Φ are all assumed to be known functions of x, y, z and t.

7.2 Various Cases of the Heat Transfer Equation

Here we compile the various cases of the conservation of energy equation for a solid with Fourier’s
Law incorporated, i.e., the heat transfer equation.

1. General 3-D case (with k = k( x, y, z, t )):

ρĈ
∂T

∂t
= −∇(−k∇T ) + ρΦ (7.11)
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2. Thermal conductivity, k, is constant:

ρĈ
∂T

∂t
= k∇2T + ρΦ (7.12)

ρĈ
∂T

∂t
= k

(
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

)
+ ρΦ, T = T ( x, y, z, t )

3. Steady-State (where the temperature is constant with time) and constant k:

k∇2T = −ρΦT = T (x, y, z ) (7.13)

4. 1-D Steady-State with constant k:

k
d2T

dx2
(x) = −ρΦT = T (x) (7.14)

7.3 Boundary Conditions

In order to complete the solution of any differential equation, appropriate boundary conditions must
be specified. In heat transfer through a solid, there are three types of boundary conditions that will
be considered herein.

1. Specified surface temperature: T ( x, y, z, t ) = TS(x, y, z, t ), where the subscript “S” refers to
the boundary surface of the body.

2. Specified heat flux on surface with normal n: n · q = n · (−k∇T ) = function(x, y, z, t). The
special case of an insulated boundary where there is no heat flux is given by: n · q = 0.

3. Specified heat flux due to convective heat transfer on the boundary: n ·q = h(TS −T∞) where

– TS = surface temperature (unknown)

– T∞ = far-field temperature (specified/known)

– h = heat convection coefficient (from experiment)

Note: h has units of J
(m2 s ◦C) = W

(m2◦C) .

n

Types of B.C.

1) specified temperature
2) insulated
3) convection

Note: is the
temperature of the
environment

 T∞ TS

1) T = TS (x, y, z, t)

2) n · q = 0

3) n · q = h (TS − T∞)
T∞

Figure 7.5: Solid with Boundary Conditions Shown

Another type of temperature boundary condition is radiation to the environment from a body.
The radiative boundary condition takes the form of q · n = κ(T 4

S − T 4
∞) where κ is a radiation
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constant. This type of boundary condition is important but will not be considered here since it
leads to nonlinear equations.

Consider two bodies that are touching so that they have an interface between them as shown be-
low. Assume that the temperature distribution in bodies 1 and 2 are T1(x, y, z, t ) and T2( x, y, z, t ),
respectively. Thermal conductivity for the two bodies is k1 and k2. At the interface of two solids,

1 2

n
1k

2k

2q

-n
1q

interface boundary conditions:

T1 = T2

n · q1 = n · q2

Figure 7.6: Two Bodies in Contact

there are two “boundary” conditions that must be met:

1. The temperature of each body at the interface must be equal: T1 = T2.

2. The heat flux leaving body 1 at the interface must equal the heat flux entering body 2, i.e., the
heat flux is constant across the interface: n1 · q1 = n2 · q2. For a 1-D case with heat flow only
in the x direction, this reduces to k1

∂T1
∂x = k2

∂T2
∂x where the subscripts refer to the thermal

conductivity and temperature gradient in bodies 1 and 2, respectively.

The use of symbols for various material properties and temperature provides very useful information
in terms of general solutions as well as being able to see how the various terms combine and contribute
to the final solution. Examples given below will include numerical values of material properties such
as thermal conductivity k and convection coefficient h. Some typical values are listed below.

Material k
[

J
m-s-◦C

]
Material k

[
J

m-s-◦C

]
Silver 428 Water 0.6
Copper 398 Soil 0.52
Aluminum 2024-T3 190 Polyethylene 0.38
Aluminum 6061-T6 156 Teflon 0.25
Nickel 89.9 Nylon 0.24
Iron 80.4 Polystyrene 0.13
Magnesia 37.7 Polypropylene 0.12
Alumina 30.1 White Pine 0.11
Steel AISI 304 16.3 Glass wool 0.04
Spinel 15.0 Polyurethane foam 0.026
Titanium B 120VCA 7.4
Ice 2.2
Concrete 1.8
Glass 1.7
Soil (42% water) 1.1

Fluid h
[

W
(m2 K)

]
Air (free convection) 5-25
Air (forced convection) 25-250
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Useful units and conversions
1 W = J

s = 3.41 BTU
hr , 1 HP = 550 ft-lb

s = 746 W, 1 m = 3.281 ft = 39.37 in,
1 W

(m2 K) = 0.176 BTU
(hr ft2◦R) , 1 W

(m K) = 0.578 BTU
(hr ft ◦R) , 1 BTU = 1055 J,

K = 5
9

◦R = ◦C + 273 = 5
9 (460 + ◦F), ◦C = 5

9 (◦F − 32)
An example of converting h is given below:

h = 5
BTU

hr · ft2◦F = 5
1055 J

(3600 s)(0.3048 m)2 5
9

◦C
= 5 × 5.678

J
m2s · ◦C = 28.39

[
J

m2s · ◦C

]

7.4 Selected Applications

Example 7-1

Steady-state heat conduction along an insulated bar
Consider steady-state heat conduction in a bar of length L that is insulated along its lateral

sides. The material has a thermal conductivity of k. The temperature at the left end (x = 0) is T0

and at x = L, T (x = L) = TL. Determine the temperature distribution, T = T (x).

x

y

z

a

b

L

0yq =

0zq =

oT

(insulated)

LT

Figure 7.7: Insulated Bar with Temperature Boundary Conditions

• Solve the Partial Differential Equation for the 1-D case:

∇2T =
d2T

dx2
= 0 =⇒ T (x) = C1 + C2x, q = −k

dT

dx
i = −kC2i

Note that we have two unknown constants of integration C1 and C2. Thus two boundary
conditions are required.

• Satisfy Boundary Conditions on lateral surfaces:

n · q = 0 =⇒ n · (∇T ) = 0 is satisfied for the lateral surfaces.

• Satisfy Boundary Conditions at the ends:

T (0) = T0 = C1

T (L) = C1 + C2L = TL =⇒ T0 + C2L = TL =⇒ C2 =
TL − T0

L
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Substituting C1 and C2 into T (x), the temperature distribution along the length of bar is given by:

T = T (x) = T0 +
TL − T0

L
x

Example 7-2

Steady-state heat conduction through a slab
Consider steady-state heat conduction through a slab (wall) of thickness L that convects heat to

the environment on both sides as shown below. The material has a thermal conductivity of k. The

x

L

k

1h
2h

1 2( ) C CT x x= +

T∞,1

T∞,2

Figure 7.8: Wall with Convection Boundary Conditions

temperature of the environment is T∞,1 (left side) and T∞,2 (right side). The convection coefficient
on the left side of the wall is h1 and on the right side h2.

a) Determine the temperature distribution, T = T (x), through the slab.

b) Determine the heat flux in the slab.

c) For a slab that has an area A though which heat is flowing (heat flows in the x direction
through the area A with unit normal i), determine the total amount of heat energy passing
through the slab in a time period ∆t.

• Solve the Partial Differential Equation for the 1-D case:

∇2T =
d2T

dx2
= 0 =⇒ T (x) = C1 + C2x, q = −k

dT

dx
i = −kC2i

Note that we have two unknown constants of integration C1 and C2. Thus two boundary
conditions are required.

• Satisfy Boundary Conditions on each side of the wall:

– Left side of wall at x = 0: n = −1i (convection boundary condition):

n · q|x=0 = h(TS − T∞)|x=0

−i ·
(
−k

dT

dx
i
)∣∣∣∣

x=0

= kC2 = h1 ((C1 + C2(0)) − T∞,1)

kC2 = h1 (C1 − T∞,1) .................. (1)

Note that what we have done is equate the heat flux in the slab and the heat flux in the
left environment at the left boundary (x = 0).
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• Right side of wall at x = L: n = +1i (convection boundary condition):

n · q|x=L = h(TS − T∞)|x=L

+i ·
(
−k

dT

dx
i
)∣∣∣∣

x=0

= −kC2 = h2 ((C1 + C2(L)) − T∞,2)

−kC2 = h2 (C1 + C2L − T∞,2) ............... (2)

Equations (1) and (2) above may now be solved for the constants of integration. We have a system
of two equations: [

h1 −k
h2 (k + h2L)

] {
C1

C2

}
=

{
h1T∞,1

h2T∞,2

}
(7.15)

Solving equations (7.15) gives

C1 =
k(h1T∞,1 + h2T∞,2) + h1h2LT∞,1

kh1 + h1h2L + kh2
(7.16)

C2 =
h1h2(T∞,2 − T∞,1)
kh1 + h1h2L + kh2

The constants of integration (7.16) may be substituted into the general solution for T (x) to obtain
the temperature distribution through the wall:

T (x) = C1 + C2x =
k(h1T∞,1 + h2T∞,2) + h1h2LT∞,1

kh1 + h1h2L + kh2
+

h1h2(T∞,2 − T∞,1)
kh1 + h1h2L + kh2

x

The heat flux through the wall is given by Fourier’s Law:

q = −k
dT

dx
i = −kC2i = −k

h1h2(T∞,2 − T∞,1)
kh1 + h1h2L + kh2

i (7.17)

The last result may be written in a slightly different, more informative, way. Divide the numerator
and denominator of right side of equation (7.17) by kh1h2 to obtain

−kh1h2(T∞,2 − T∞,1)
kh1 + h1h2L + kh2

1
kh1h2

1
kh1h2

= − (T∞,2 − T∞,1)
1
h2

+ L
k + 1

h1

= −T∞,2 − T∞,1

R

where R ≡ 1
h2

+ L
k + 1

h1
so that heat flux is given by:

q = − (T∞,2 − T∞,1)
R

i (7.18)

The quantity R is called the effective thermal resistance and will be discussed later in this chapter.
Note that if T∞,1 is higher than T∞,2 (as shown on the sketch above), then equation (7.18) (or
(7.17)) indicates that heat flow is to the right as expected.

The total heat flow energy passing through a wall with an area A in time ∆t is obtained by
multiplying the heat flux by the area and time:

Q = qxA∆t (7.19)

Note: The solution for the system of equations (7.15) may be obtained using Scientific Workplace:
h1C1 − kC2 = h1T∞,1

h2C1 + (k + h2L)C2 = h2T∞,2
,

Solution is :
{

C1 = h1kT∞,1+h1h2LT∞,1+h2T∞,2k
h2k+h1k+h1h2L , C2 = −h1h2

−T∞,2+T∞,1
h2k+h1k+h1h2L

}
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x

L

k

1h
2h

1 2( ) C CT x x= +

T∞,2

T∞,1

Figure 7.9: Wall with Convection Boundary Conditions

Example 7-3

Steady-state heat conduction through a slab (numerical example)
This example is identical to the previous example, except with numerical values for material

constants and the boundary conditions. Consider steady-state heat conduction through a slab (wall)
of thickness 2-cm that convects heat to the environment on both sides as shown below.

The material is aluminum and has a thermal conductivity of 247 J
(m s C) . The temperature of

the environment is 50 ◦C (left side) and 20 ◦C (right side). The convection coefficient on the left
side of wall is 40 W

(m2◦C) and on the right side is 10 W
(m2◦C) .

a) Determine the temperature distribution, T = T (x), through the slab.

b) Determine the temperature at the left and right boundaries.

c) Determine the heat flux in the slab.

d) For a slab that has an area 2 m2 though which heat is flowing (heat flows in the x direction
through the area A with unit normal i), determine the total amount of heat energy passing
through the slab in 1 hour.

• Solve the Partial Differential Equation for the 1-D case:

∇2T =
d2T

dx2
= 0 =⇒ T (x) = C1 + C2x, q = −k

dT

dx
i = −kC2i

Note that we have two unknown constants of integration C1 and C2. Thus two boundary
conditions are required.

• Satisfy Boundary Conditions on each side of the wall

– Left side of wall at x = 0: n = −1i (convection boundary condition):

n · q|x=0 = h(TS − T∞)|x=0

−i ·
(
−k

dT

dx
i
)∣∣∣∣

x=0

= kC2 = h1 ((C1 + C2(0)) − T∞,1)

kC2 = h1 (C1 − T∞,1) =⇒

247
J

m - s - C
C2 = 40

J
m2 - s - C

(C1 − 50 ◦C) ..... (1)
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Note that what we have done is equate the heat flux in the slab and the heat flux in the
left environment at the left boundary (x = 0).

– Right side of wall at x = L: n = +1i (convection boundary condition):

n · q|x=L = h(TS − T∞)|x=L

+i ·
(
−k

dT

dx
i
)∣∣∣∣

x=0

= −k(C2) = h2 ((C1 + C2(L)) − T∞,2)

−kC2 = h2 (C1 + C2L − T∞,2) =⇒

−247
J

m - s - ◦C
C2 = 10

J
m2 - s - ◦C

(C1 + C2(.02 m) − 20 ◦C) .. (2)

Equations (1) and (2) directly above may now be solved for the constants of integration. We have
a system of two equations: [

40 −247
10 247.2

] {
C1

C2

}
=

{
2000
200

}
(7.20)

Solving equations (7.20) gives

C1 = 44.0 ◦C

C2 = −0.971
(◦C

m

)

Substituting C1 and C2 into T (x), the temperature distribution through the wall is given by:

T (x) = C1 + C2x = 44 − 0.971x ◦C (7.21)

The temperature at any point in the slab may now be obtained by substituting an x position into
equation (7.21). At the left boundary x = 0 and at the right boundary x = 0.02 m so that

left boundary : T (x = 0) = 44 − 0.971(0.0) = 44 ◦C
right boundary : T (x = 0.02) = 44 − 0.971(0.02) = 43.98 ◦C

The last result shows that aluminum is not a good insulator since the temperature on both sides of
the wall is practically identical (the thermal conductivity k for aluminum is relatively large). To a
person on the right side of the wall where the environmental temperature is 20 ◦C, the wall would
feel very hot to the touch!

The heat flux through the wall is given by

q = −k
dT

dx
i = −kC2i = −247

J
(m - s - ◦C)

(
−0.971

◦C
m

)
i = +239.8

(
J

m2 - s

)
i

We could have determined the effective thermal resistance R

R ≡ 1
h2

+
L

k
+

1
h1

=
1

10 J
m2 - s - ◦C

+
.02 m

247 J
m - s - C

+
1

40 J
m2 - s - ◦C

= 0.12508
m2 - s - ◦C

J

so that heat flux is given by: q = − (T∞,2−T∞,1)
R i = − (20 ◦C−50 ◦C)

.12508m2 - s - ◦C
J

i = 239.8i J
m2 - s

Note that since T∞,1 on the left is higher than T∞,2 on the right, then the heat flow is positive
and to the right as expected.

The total heat flow energy flowing through an area of 2 m2 in 1 hour is obtained by multiplying
the heat flux by the area and time:

Q = qxA∆t = 239.8
J

m2 - s
(2 m2)

(
1 hr

3600 s
hr

)
= 1.73 × 106 J
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Example 7-4

The wall thickness of a refrigerator must be designed to maintain the temperature shown below
(given a −5 ◦C wall temperature on the inside of the refrigerator and 40 ◦C environmental temper-
ature on the outside of the refrigerator) with the additional requirement that the heat flux cannot
exceed 1 × 102 J

(m2 -s) .

x

L =?

inside

outside

s 5 CT = −  °

1 2( ) C CT x x= +

0.1(W / C)k m=  °

210(W / C)h m= °

40 C= °T∞

Figure 7.10: Refrigerator Wall

The wall is constructed of a foam insulating material with thermal conductivity of 0.1 J
(m s ◦C) .

The refrigerator is a rectangular box with a total surface wall area of 4 m2.

a) What is the minimum required wall thickness?

b) What is the outside wall temperature?

c) What is the temperature gradient across the wall?

d) How many kilowatts of energy are lost per day due to convection?

• Solve the Partial Differential Equation for the 1-D case:

∇2T =
d2T

dx2
= 0 =⇒ T (x) = C1 + C2x, q = −k

dT

dx
i = −kC2i

Note that we have two unknown constants of integration C1 and C2 but we also have a
third unknown, which is the wall thickness L (total of 3 unknowns). We have two boundary
conditions on temperature (convection on left side and specified temperature on right wall)
plus the third condition for the specified heat flux.

• Satisfy Boundary Conditions on each side of the wall:

– Left side of wall at x = 0: n = −1i (convection boundary condition):

n · q|x=0 = h(TS − T∞)|x=0

−i ·
(
−k

dT

dx
i
)∣∣∣∣

x=0

= kC2 = h ((C1 + C2(0)) − T∞)

kC2 = h (C1 − T∞) =⇒

0.1
J

m - s - ◦C
C2 = 10

J
m2 - s - ◦C

(C1 − 40 ◦C) ....... (1)
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– Right side of wall at x = L: n = +1i and T = −5 ◦C (specified temperature):

T (x = L) = C1 + C2(L) = −5 ◦C .................... (2)

• Notice that at this point, we have two equations, (1) and (2), but three unknowns: C1, C2 and
L. The third equation is obtained from the heat flux requirement.

qx = −k
dT

dx
= −kC2 = −0.1C2

W
m ◦C

≤ 1 × 102 W
m2

C2 ≤ −1 × 103

(◦C
m

)
........................................ (3)

We will take C2 = −103
(

◦C
m

)
(i.e., the largest value that still satisfies (3)). A smaller value would

produce a smaller heat flux than the allowed requirement but would produce a larger thickness.
Equation (1), (2) and (3) directly above may be solved for the three unknowns to obtain.

C2 = −1000
(◦C

m

)

C1 = 30 ◦C
L = 0.035 m

Hence the minimum wall thickness is L = 3.5 cm. Any wall thickness greater than this will
produce a smaller heat flux than the specified allowable maximum.

b) The temperature distribution through the wall is given by:

T (x) = C1 + C2x = 30 − 103x ◦C

The outside wall of the refrigerator is at x = 0 and hence we have

outside wall temperature: T (x = 0) = 30 − 103(0.0) = 30 ◦C

c) The temperature gradient through the wall is simply dT
dx :

temperature gradient in wall =
dT

dx
= C2 = −103

◦C
m

The magnitude of the temperature gradient is large which shows that the foam is a very good
insulator (has a small thermal conductivity k). In this case, the outside wall temperature is 30 ◦C
while the inside wall temperature is −5 ◦C with a wall thickness of only 2.5 cm.

7.5 Heat Conduction Through a Composite Flat Wall

Consider two plane walls in contact (called a composite wall) as shown below. The individual walls
are labeled 1 and 2 as are each the thermal conductivity k and thickness L. Assume the wall
boundaries convect heat to the environment on both sides. Each side may have different convection
coefficients h and environmental temperature Tinf .

Each layer must satisfy the heat conduction equation ∇2T = ∂2T
∂x2 = 0 whose solution is a linear

function in x. Consequently, we have the following solution for layers 1 and 2:
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x

1 1 1( )T x a b x= +

A

C
B

2h

1h

2 22 ( )T x a b x= +

L1 L2

k2k1

x1 x2

T∞,2

T∞,1

Figure 7.11: Composite Wall With Convection Boundary Conditions

∇2T1 =
d2T1

dx2
= 0 =⇒ T1(x) = a1 + b1x (7.22)

∇2T2 =
d2T2

dx2
= 0 =⇒ T2(x) = a2 + b2x

To evaluate the constants a1, a2, b1, and b2, the boundary conditions at points A and C and the
interface conditions at B must be satisfied.

A) Convective boundary condition at x = 0: (note direction of n, n = −i)

q · n|x=0 = h (TS − T∞)|x=0

=⇒
(
−k1

dT1

dx
i
)
· (−i) = k1

dT1

dx

∣∣∣∣
x=0

= k1b1 = h1 (T1 − T∞,1)|x=0 = h1 (a1 − T∞,1)

=⇒ k1b1 = h1 (a1 − T∞,1) (7.23)

B) Interface boundary condition between wall 1 and 2 at x = x1:

T1(x1) = T2(x1) =⇒ a1 + b1x1 = a2 + b2x1 (7.24)

(q · n)slab 1 = (q · n)slab 2 =⇒
(
−k1

dT1

dx
i
)
· i =

(
−k2

dT2

dx
i
)
· i =⇒ b1k1 = b2k2 (7.25)

C) Convective boundary condition at x = x2: (note change in n direction, n = +i)

q · n|x=x2
= h (TS − T∞)|x=x2

=⇒
(
−k2

dT2

dx
i
)
· (+i) = −k2

dT2

dx

∣∣∣∣
x=x2

= −k2b2 = h2 (T2 − T∞,2)|x=x2
= h2 (a2 + b2x2 − T∞,2)

=⇒ −k2b2 = h2 (a2 + b2x2 − T∞,2) (7.26)
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Consequently we have four equations and four unknowns (a1, a2, b1, and b2) as follows:

k1b1 = h1 (a1 − T∞,1)
a1 + b1x1 = a2 + b2x1 (7.27)

b1k1 = b2k2

k2b2 = −h2 (a2 + b2x2 − T∞,2)

The above system of four equations can be solved for a1, a2, b1, and b2 and the result substituted
back into equation (7.22) to obtain T1(x) and T2(x). The heat flux in the x direction is given by

qx = −h1 (a1 − T∞,1) = k1b1 = k2b2 = h2 ((a2 + b2x2) − T∞,2) (7.28)

For 1-D slab heat flow, heat can flow only in one direction (in this case, the x direction). Con-
sequently, in the absence of heat sinks/sources in a layer, the heat flux must remain a constant
as it passes through the convective air layer on the left, through each slab and finally through the
convective air layer on the right.

To simplify the solution for a composite wall (with no internal heat source), we seek to
develop a simplified relation between the overall heat flux through the composite wall and the given
temperature gradient from one side of the composite wall to the other:

qx = −U∆T or qx = −
(

1
R

)
∆T (7.29)

∆T = T∞,2 − T∞,1

where U ≡ effective heat transfer coefficient of the composite wall, R = 1
U ≡ effective thermal

resistance of the composite wall and, for the case of convection boundary conditions on each side of
the composite wall, the known temperature gradient from left to right is given by ∆T = T∞,2−T∞,1.

The solution of the ODE for heat transfer through a single layer with no heat source requires
that the temperature variation in the layer is a linear function of x: T (x) = a + bx where a and b
are constants of integration dependent on boundary conditions. If the temperature on either side of
a wall of thickness L is TA and TB , then T (x) = TA +

[
(TB−TA)

L

]
x. For the composite wall shown

below, we introduce the following notation. Define the temperature at the left boundary to be TA,
at the interface TB , and at the right boundary TC as shown in the figure below. At this point, TA,
TB , and TC are unknown.

In the absence of a heat source within the body, the temperature in each layer will be a linear
function of x so that we may write the following equations for the temperature in each layer:

T1(x) = TA +
(

TB − TA

L1

)
x (7.30)

T2(x) = TB +
(

TC − TB

L2

)
(x − x1)

At x = L1 (the interface), these equations already satisfy the interface condition that T1(x) =
T2(x) = TB . Therefore, only the heat flux boundary condition needs to be satisfied at the interface
and the convective boundary condition at the left and right boundaries of the composite wall. From
conservation of energy, the heat energy Qx through a given area A (Qx = qxA) must be constant
as it enters on the left and leaves on the right boundary (since we assumed there is no internal heat
generation, Φ). Since heat flow is normal to wall, each layer has same normal area (so area cancels
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T∞,1

T∞,2

TA

TB

TC

L1 L2

T1 (x) = TA + TB−TA

L1
x

k1 k2

T2 (x) = TB + TC−TB

L2
(x − x1)

x1 x2

h1

h2

x

Figure 7.12: Composite Wall With Convective Boundary Conditions

out). Thus, the heat flux qx must remain a constant as it passes through the convective air layer on
the left, through each slab and finally through the convective air layer on the right and we can write

qx = −h1 (TA − T∞,1) = −k1
TB − TA

L1
= −k2

TC − TB

L2
= h2 (TC − T∞,2) (7.31)

Equation (7.31) may be separated into 4 equations by considering each heat flux term individually
to obtain:

T∞,1 − TA =
1
h1

qx (1)

TB − TC =
L2

k2
qx (2) (7.32)

TA − TB =
L1

k1
qx (3)

TC − T∞,2 =
1
h2

qx (4)

Add these four equations, (1) through (4) to obtain

T∞,1 − T∞,2 = +
(

1
h1

+
L1

k1
+

L2

k2
+

1
h2

)
qx (7.33)

or,

qx = − (T∞,2 − T∞,1)
1

1
h1

+ L1
k1

+ L2
k2

+ 1
h2︸ ︷︷ ︸

thermal resistance of
the composite wall

(7.34)

The fractional term in (7.34) may be defined as the effective heat transfer coefficient U :

U = effective heat transfer coefficient =
1

1
h1

+
n∑

i=1

Li

ki
+ 1

h2

(7.35)
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where n is the number of layers in the composite wall. We may also define the effective thermal
resistance R by the reciprocal of U :

R = effective thermal resistance =
1
U

=
1
h1

+
n∑

i=1

Li

ki
+

1
h2

(7.36)

Consequently, the heat flux qx through the composite wall with convection boundary conditions on
both sides of the wall is given by

qx = −U∆T = −∆T

R
(7.37)

where ∆T = T∞,2 − T∞,1

Note that thermal resistance terms (like L
k or 1

h ) are additive similar to resistors in electrical theory.
The last result may be expanded to include various boundary conditions on the left and right

side of the composite wall. For example, for a composite wall with 3 layers we obtain the following
summary of results:

Summary of Conduction Through Composite Walls

1h
2h

1

1L

k 2

2L

k 3

3L

k

AT

BT

CT
DT

2h

1

1L

k 2

2L

k 3

3L

k

AT
BT

CT
DT

1

1L

k 2

2L

k 3

3L

k

AT

BT

CT

DT
T∞,2

T∞,1

T∞,2

Figure 7.13:

R =
1
h1

+
N∑

i=1

Li

ki
+

1
h2

R =
N∑

i=1

Li

ki
+

1
h2

R =
N∑

i=1

Li

ki
(7.38)

qx = − (T∞,2 − T∞,1)
1
R

qx = − (T∞,2 − TA)
1
R

qx = − (TD − TA)
1
R

where the heat flux in each layer is given by:

qx = −h1 (TA − T∞,1)

qx = − k1

L2
(TB − TA)

qx = − k2

L2
(TC − TB) (7.39)

qx = − k3

L3
(TD − TC)

qx = −h2 (T∞,2 − TD)
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Note: the fist and last terms below represent heat flux through the fluid layers where convection
occurs (terms with h) and the 2nd through 4th terms represent heat flux through the solid layers
where conduction occurs (terms with k).

Considering the definition of R (7.38) for the various cases of different boundary conditions we
note that when there is convection on the left and right, the terms h1 and h2 appear in R. When
there is convection only on the right, only h2 appears, etc. For three solid layers, we have L

k for each
of the three layers. This suggests the following simplified definition of R:

R = effective thermal resistance =
1
U

=
〈

1
h1

〉
+

n∑
i=1

Li

ki
+

〈
1
h2

〉
(7.40)

where 〈〉 means to include the h term only if there is convection on left (h1) or right (h2)
The general solution procedure then consists of three steps:

1. Evaluate effective thermal resistance R using (7.40)

2. Evaluate the heat flux qx for the composite wall using qx = −
(

1
R

)
∆T where

∆T = (right most temperature) − (left most temperature).

3. Evaluate the temperatures for each layer using (7.39) working from left to right through the
layers. TA can be obtained from the first equation in (7.39), TB from second equation, etc.

Example 7-5

Consider a two-layer composite wall with 1-D heat transfer through the layers and free convection
of air on either side with h = 5 BTU

(hr ft2 ◦F) . Assume the thickness of each layer is L1 = L2 = 10 cm.
The temperature difference from left to right is (T∞,2 − T∞,1) = 50 ◦C. Find qx for the following
situations:

a) Material 1-glass; Material 2-glass

b) Material 1-copper; Material 2-glass

c) Material 1-copper; Material 2-teflon

Solution

a) h is first converted to metric:

h = 5
BTU

h · ft2 ◦F
= 5 × 1055 J

(3600 s)(0.3048 m)2 5
9

◦C
= 5 × 5.68

J
m2 s · ◦C = 28.39

[
J

m2 s · ◦C

]

R =
1

28.39
+

0.1
1.7

+
0.1
1.7

+
1

28.39
= (0.035 + 0.058) 2 = 0.188

m2 ◦C
W

qx = −50
1
R

= −50
1

0.188
= −265.8

[
W
m2

] [
free convection
glass/glass

]

b)

R =
1

28.39
+

0.1
398

+
0.1
1.7

+
1

28.39
= 0.1295

qx = −50
1
R

= −386
[

W
m2

] [
free convection
copper/glass

]
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c)

R = 2
1

28.39
+

0.1
328

+
0.1
0.25

= 0.47

qx = −50
1
R

= −106.2
[

W
m2

] [
free convection
copper/teflon

]

Note that in case c), the introduction of teflon, which is a good insulator with a relatively low
coefficient of thermal conductivity k, yields a higher effective resistance R and correspondingly
lower heat flux, qx.

Example 7-6

Consider a two layer composite wall of copper and teflon as shown below. The copper has a
thickness of 10 cm but the thickness of the teflon is to be determined. The temperature on the left
boundary is equal to 200 ◦C and on the right boundary 25 ◦C. Determine the thickness of the teflon
layer so that the heat flux is equal to 200 W

m2 .
Given:

TA

TB

copper teflon

TA = 200◦C
TC = 25◦C
L1 = 0.1 m
qx = 200

[
W
m2

]

L1 L2

TC

Figure 7.14:

Find : L2

Solution

qx = −U∆T = − 1
R

∆T

R = −∆T

qx
= −25 − 200

200
= 0.875

◦C - m2

W
(7.41)

R =
L1

k1
+

L2

k2
=

0.1 m
398 J

m - s

+
L2

0.25 J
m - s

= 0.875
◦C - m2

W
=⇒ L2 = 0.22 m

Example 7-7

Consider steady-state heat conduction through a cylindrical wall with convection on both sides
of the cylindrical wall. Find the temperature of the wall.

The heat transfer equation in cylindrical coordinates is given by

∇2T = 0
T (r1)

}
,

d2T

dr2
+

1
r

dT

dr
= 0 =⇒ T = C1 ln r + C2 (7.42)
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rA

rB T∞,2 , h2

T∞,1 , h1 TA

TB

Figure 7.15:

In the absence of internal a heat source in the solid, the solution provided above will always hold.
at A

q · n = h1 (TA − T∞,1) =⇒ −k
dT

dr
er · (−er) = k

dT

dr
= h1 (TA − T∞,1) (7.43)

at B

q · n = h2 (TB − T∞,2) =⇒ −k
dT

dr
er · er = −k

dT

dr
= h2 (TB − T∞,2) (7.44)

Substituting (7.42) into the previous two boundary condition equations yields:

kC1
1
rA

= h1 (C1 ln rA + C2 − T∞,1) (7.45)

kC1
1
rB

= −h2 (C1 ln rB + C2 − T∞,2)

Equations (7.45) may be solved for C1 and C2 and substituted into (7.42) to obtain the solution
for the temperature distribution T (r).

Example 7-8

Consider steady-state heat conduction through a cylindrical wall with specified temperature on
the boundaries of the cylindrical wall. Find the temperature of the wall.

The solution of the heat flow equation in cylindrical coordinates is given by

∇2T = 0
T (r1)

}
,

d2T

dr2
+

1
r

dT

dr
= 0 =⇒ T (r) = C1 ln r + C2

Applying the boundary conditions at the inner and outer radius gives

T (ri) = Ti = C1 ln ri + C2 ....... (1)
T (ro) = To = C1 ln ro + C2 ....... (2)

Subtracting equation (2) from equation (1) gives:

Ti − To = C1 ln
(

ri

ro

)
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ri

ro

Ti
To

Ti , To are specified

Figure 7.16:

or,

C1 =
Ti − To

ln
(

ri

ro

)

Substituting C1 into equation (1) above gives

C2 = Ti −
Ti − To

ln
(

ri

ro

) ln(ro)

Substituting C1 and C2 into T (r) yields

T =
Ti − To

ln
(

ri

ro

) ln r +


Ti −

(Ti − To) ln ri

ln
(

ri

ro

)

 = Ti + (Ti − To)

ln
(

r
ri

)
ln

(
ri

ro

)
or

T (r) = Ti − (Ti − To)
ln

(
r
ri

)
ln

(
ro

ri

)

The heat flux in the radial direction is given by:

qr(r) = −k
dT

dr
= +k


(Ti − To)

1
r

1

ln
(

ro

ri

)



or

qr(r) = k
1
r

Ti − To

ln
(

ro

ri

)

Note that the heat flux qr is a function of radial position r. This is necessary because the area
through which the heat flows increases as r increases. The radial flow Qr for time ∆t is given by
Qr = qrA∆t = qr(2πr)∆t = 2π∆tk Ti−To

ln
(

r0
ri

) . Note that Qris independent of r (as it should be) since

there is no internal heat source and thus the heat flow must be the same at all radial positions, r.
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Deep Thought

Comfort, like heat, can be conducted through the 
human touch. 
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7.6 Questions

7.1 What are the three types of boundary conditions and their corresponding equations that are
used frequently in relation to heat transfer?

7.2 List and explain the heat conduction problem solving method.

7.3 What is the equation used when solving a problem about conduction through a cylindrical
wall? What kind of equation is this, and how many boundary conditions are required to solve
it?

7.7 Problems

7.4 GIVEN : A laterally insulated rod, as shown below, with a uniform heat source of ρΦ =
1.0 J

(m3 sec) . Heat flows only in the x direction.

1.0 m T = 0 oCT = 75 oC

x

Problem 7.4

REQUIRED : Calculate the temperature field T (x) inside the rod for two different thermal
conductivity coefficients:

(1) kCopper = 398 J
(sec m ◦K)

(2) kNylon = 0.24 J
(sec m ◦K)

(3) Show graphically the temperature distribution T (x) for these two cases using the same
scale.

(4) Calculate the heat flux (heat transfer rate) to the surroundings at either end.

7.5 GIVEN : A laterally insulated rod without any heat source inside the rod, as shown below.
Heat flows only in the x direction.

1.0 m T = 0 oCT = 10 oC

x

Problem 7.5
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REQUIRED : For two different materials: (1) Copper, and (2) Nylon, using the data given in
7.4,

(1) Are the temperature distributions inside the rod for these two different materials the
same? Why?

(2) Compute the heat transfer rate from the left surface of the rod to the right surface of the
rod. Are they the same? Why?

7.6 GIVEN : A slab, as shown below, with heat source ρΦ = 4x J
(m3 sec) , and thermal conductivity

k = 2.0 J
(sec m ◦K) . Heat flows only in the x direction.

Insulated Surface T= 40 oC

1.8 m

x

Problem 7.6

REQUIRED : Determine the temperature field T = T (x). Draw the curve T vs. x.

7.8 GIVEN : Consider an insulated rod with heat flow in the x direction only. At the left boundary,
the temperature is 100 ◦C. On the right boundary, convection occurs and the following is
known: temperature at right boundary is 60 ◦C and the environmental temperature is 20 ◦C.
The convection coefficient is unknown.

T (0) = 100◦C

T (1) = 60◦C

T∞ = 20◦C
0 m 1 m

Aluminum x

Problem 7.8

a) Find qx.

b) Find h.

7.9 Consider a two layer slab with heat flow through the slab. The following material properties
are known:
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Material k
[

J
m - s - ◦C

]
Aluminum 247
Copper 398
Iron 80.4
Nickel 89.9
Silver 428
Alumina 30.1 Polyethylene 0.38
Magnesia 37.7 Polypropylene 0.12
Spinel 15.0 Polystyrene 0.13
glass 1.7 Teflon 0.25

Nylon 0.24

Assume the layer thicknesses are L1 = L2 = 5 in, (T∞,1 − T∞,2) = 80 ◦C. Find qx for the
following three situations:

a) Material 1-magnesia; Material 2–magnesia;

b) Material 1-spinel; Material 2-silver;

c) Material 1-iron; Material 2-polyethylene.

7.10 The earth is cooling down due to an unforeseen disaster on the surface of the sun. The earth’s
engineers have undertaken a monumental task of bringing thermal energy from the center of
the earth. Therefore, they have drilled deep holes and inserted copper rods

(
k = 402 J

sec - m - C

)
up to the depth where the temperature is equal to the melting point of copper (TM = 1100 ◦C),
a depth of about 80 km. The plan is to have the rods insulated along their lateral boundaries.

REQUIRED :

i) Find the temperature along the copper rods, as a function of length, at the North and
South Poles (−20 ◦C) and at the equator (30 ◦C) for steady state conditions.

ii) Find the heat flux (energy per unit area per unit time) for the above cases.

7.11 GIVEN : 1-D steady state heat flow through a slab of thickness L = 7 m which is insulated on
the left boundary. Boundary temperatures are as shown on the sketch. The slab has a constant
heat source of ρΦ = 45 W

m3 .

REQUIRED : The temperature distribution T (x) in the slab.

7.12 GIVEN : A slab as shown below.

REQUIRED : Determine T (x) by integrating the ODE and applying the boundary conditions
(BCs).

7.13 GIVEN : A slab as shown below.

REQUIRED : Determine T = T (x)

7.14 A slab as shown below with convection on the left boundary and specified temperature on the
right boundary.

Determine T (x) and the length L such that the heat flux going out the right side of the wall
does not exceed 80

(
W
m2

)
.

7.15 GIVEN : A slab as shown below which is insulated on the left boundary and has a specified
temperature on the right boundary.

REQUIRED : Determine the temperature distribution T (x) in the slab.
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N

E

S

Tm = °1100 C

L = 80 km

Problem 7.10

L

T=50°C

k=1.7 J/(m-s-°C)

T=125°C

x

Problem 7.11

 

T = 1500◦C

ρΦ = Heat Source = x
2

[
1
m

] [
W
m3

]k = 4
[

W
m·K

]

1.5 m

Insulated
Surface

x

y

Problem 7.12
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2 in

Insulated
Surface x

T = 100◦F

Φ = Heat Source = 5x2 in units of BTU
h−ft3

k = 0.5 BTU
h−ft−◦F

Problem 7.13

T = 60◦C

L

k = 10.25
[

W
m·K

]

T∞ = 20◦C

x

y

h = 5.5
[

W
m2·K

]

Problem 7.14

T = 200◦F

ρΦ = Heat Source = 2x
[

BTU
h−ft3

]
6 inches

k = 3 BTU
h−ft−◦F

x

y

Insulated
Surface

Problem 7.15
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T∞,1 = 100◦C Tb = 10◦C

x

k = 2.0
[

W
m·K

]
h = 200

[
J

h·m2·◦C

]
0.5 m

Problem 7.16

7.16 GIVEN The single layer slab shown below with convection on the left boundary and specified
temperature on the right boundary.

REQUIRED :

a) Solve the heat transfer equation and find the temperature distribution T (x) using the
second-order differential equation without a heat source.

b) Write out the boundary conditions and the interface (matching) conditions required to
solve the heat transfer problem.

c) Write out the boundary conditions and the interface conditions in terms of the tempera-
ture profile constants for each layer.

d) Solve for the constants using the above equations.

7.17 GIVEN : A slab with k = 1.0 W
(m - ◦K) , and thickness L = 1 m. On the left surface, the

temperature TA = 40 ◦C, and on the right surface, a free convection boundary condition is
applied with h = 20 W

m2 ◦K and the free stream temperature T∞ = 10 ◦C.

REQUIRED :

a) Solve the heat transfer equation and find the temperature profile inside the slab.

b) Find the total heat loss/gain on both surfaces of the slab if it is 2.0 m high and 1 m wide.

7.18 GIVEN : A laterally insulated rod as shown below.

x

T F= °200

T F= °0

2 ft
k = 5 BTU

h−ft−◦F

Problem 7.18

REQUIRED Determine T = T (x)

7.19 GIVEN : Same rod as in 7.18, but add an internal heat source of Φ = 5 BTU
hr - ft3 .

REQUIRED :
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1) Determine T = T (x)
2) Calculate the heat transfer rate to the surroundings.

7.20 GIVEN : A laterally insulated cylindrical rod as shown below.

y
T = 100 °C

T =300 °C

5 m

x

ρΦ = 4
[

W
m3

]

Problem 7.20

REQUIRED : Determine k such that the total heat flux at the left hand side wall does not
exceed −20 W

m2 . Also find the temperature profile, T (x).

7.21 GIVEN : A laterally insulated cylindrical rod as shown below,

5 m

T = 0◦C

qx = −250
[

W
m2

]

ρΦ = 4
[

W
m3

]
k = 3

[
W

m·◦K

]

y

x

Problem 7.21

REQUIRED :

a) Determine T (x)
b) Determine T (1.5 m).

7.22 GIVEN : A laterally insulated cylindrical rod as shown below.

T = 0◦F

k = 2
[

BTU
hr−ft−◦F

]
ρΦ = 8

[
BTU

hr−ft3

]
10 ftradius of rod = 1 ft

qx = −200
[

BTU
hr−ft2

]y

x

Problem 7.22

REQUIRED :
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a) Determine T (x)

b) Determine T (10 ft)

7.23 GIVEN : A laterally insulated cylindrical rod as shown below.

T = 0◦F

k = 4
[

BTU
hr−ft−◦F

]
ρΦ = 5

[
BTU

hr−ft3

]
10 ftradius of rod = 1 ft

y

x

T = 500◦F

Problem 7.23

REQUIRED :

a) Determine T (x)

b) Calculate the heat transfer rate , Q, to the surroundings { Note: Q =
∫

qxdA and
qx = n ·

(
−k ∂T

∂x

)
. Also, there are two ends! }

7.24 Water at 100 ◦C flows through a cylindrical iron pipe of internal radius of ri = 5 cm and
external radius ro = 5.25 cm. The air surrounding the pipe is at 25 ◦C. For a pipe length of
100 m. If hair = 5.0 W

m2 ◦K and hwater = 55.0 W
m2 ◦K , calculate the following:

a) Solve the ODE in order to obtain the temperature T (r).

b) Calculate the heat flux q at ri and ro. Calculate at ri and ro the total heat loss in the
pipe after one hour.

c) Calculate the temperature at the outside surface of the pipe. Is this a safe practice? From
a safety point of view, what would you recommend in order to improve the design?

T∞,1

T∞,2

hwater

hair

r

Problem 7.24

7.25 A steel pipe, with thermal conductivity of 80 W
m ◦K , has an inner diameter of 9 cm, and an

outer diameter of 10 cm. The exterior of the pipe is subjected to a forced airflow at −5 ◦C,
which produces a heat transfer coefficient of 100 W

m2 ◦K . The tube contains flowing liquid at
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50 ◦C and has a heat transfer coefficient of 500 W
m2 ◦K at the inner pipe wall. NOTE: The pipe

diameters are given in centimeters not meters. Determine (through integration and application
of BCs) the following:

(1) the temperatures on the inner and outer surfaces of the pipe;

(2) the total heat loss per hour and per meter of the pipe length.

7.26 Consider the two layer slab below with specified boundary temperatures as shown. Determine
T (x) in each layer by solving the ODE for each slab and applying boundary conditions, i.e.
solve 4 equations for 4 unknown constants of integration (c1, c2, c3, and c4).

k1 = 5
[

W
m·◦K

]

k2 = 3
[

W
m·◦K

]

y

0.08 m0.06 m

T = 500◦C

x

T = 0◦C
21

Problem 7.26

7.27 GIVEN : A furnace wall with specified boundary temperatures is insulated as shown:

F u rn a ce W all In su la tio n

kFurnance Wall = 1.2
[

Btu
hr−◦F

]

1.5 ft

kInsulation = 0.053
[

Btu
hr−◦F

]

T = 2200◦F

T = 70◦F

t

Problem 7.27

REQUIRED : Calculate the minimum insulation thickness, t, required to maintain a heat loss
of: 250 BTU

hr - ft2

7.28 GIVEN : steady state conditions, 1-dimension, Φ = 0, with free convection on the left boundary
and specified temperature on the right boundary. Assume all quantities are metric.
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h = 5

∂2T1

∂x2

∂2T2

∂x2

k1 = 1.7 k2 = 30

T∞ = 22◦C

5 4

TC = 500◦C

TA TB TC

Problem 7.28

FIND : Determine T1(x) and T2(x) by solving the ODE for each layer and applying the appro-
priate boundary conditions.

7.29 GIVEN : A 2-layer composite flat wall, as shown below, with given heat flux at the left surface
of the wall and free convection boundary at the right surface of the wall. The material constants
and the magnitude of the heat flux and the far field temperature are indicated in the figure.

k1 k2

x = x1 x2 x3

Convection
h, T∞

qx = 10
[

W
m2

]
on the left boundary

x

Problem 7.29

REQUIRED : Write out the boundary conditions and the interface conditions required to solve
the heat transfer problem (Do not try to solve the problem).

7.30 GIVEN : A 2-layer composite flat wall, as shown below, with TA = 22 ◦C at the left surface
of the wall and TB = 2 ◦C at the right surface of the wall. The material constants are:
k1 = 0.04 W

m ◦K , k2 = 0.12 W
m ◦K .

REQUIRED :

a) Derive the steady state temperature profile in each layer using the second order differential
equation in the absence of any heat source.

b) Write out the boundary conditions and the interface conditions required to solve the heat
transfer problem.

c) Write out the boundary conditions and the interface conditions in terms of the constants
of temperature profile in each layer.

d) Solve for the constants using the above equations and determine the temperature profile
in each layer.
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A B

0.5 m1 m

1 2

Problem 7.30

7.31 GIVEN : The 2-layer slab shown below with temperature specified on both the left and right
boundary.

2 m 1 m

Ta = 100 °C 1 2 Tb = -100 °C

k1 = 0.2 W/m°K k2 = 0.05 W/m°K

x

Problem 7.31

REQUIRED :

a) Derive the steady state temperature profile in each layer using the second-order differential
equation in the absence of any heat source.

b) Write out the boundary conditions and the interface (matching) conditions required to
solve the heat transfer problem.

c) Write out the boundary conditions and the interface conditions in terms of the tempera-
ture profile constants for each layer.

d) Solve for the constants using the above equations.
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7.32 A wall consists of two 1 cm thick wood board surfaces enclosing a 10 cm thick cavity filled
with insulation. If the thermal conductivity of the wood board and insulation are 0.12 W

m ◦K

and 0.04 W
m ◦K , respectively, and free convection conditions exist on the wall exterior surfaces

with a heat transfer coefficient of 2 W
m2 ◦K . Find

a) the temperatures on the two surfaces of the wall if outside air (to right of wall) is 0 ◦C,
and inside air (to left of wall) is 20 ◦C;

b) the effective heat transfer coefficient R for the wall;

c) the heat flux through the wall; and

d) total heat loss in an hour through the wall if the wall is 3 m high and 5 m wide.

7.33 Two-dimensional heat flow occurs in the plate shown below (heat flow is vertical). Derive the
partial differential equation assuming a constant thermal conductivity k and a steady state
situation. Also write out the expressions for each of the boundary conditions. Calculate the
total heat imparted through the plate assuming the solution T ( x, y ) for this problem was
given (in say J

hr ).

(Hint: At steady state, Qin = Qout, i.e., the amount of heat which enters the top edge (with
T1) edge over a given time period is equal to the amount which leaves along the bottom edge
during the same time period.)

Plate Thickness = 1

Insulation
T1

b b/2

3b

T2 (< T1)

Problem 7.33

7.34 In order to design a refrigerating compartment, the following requirements are given:

* The walls will be composed by two layers of aluminum, each with a thickness of 2 cm;
and a layer of insulation confined between the aluminum walls. The conductivity of the
aluminum and the insulation is given by kAl = 247 W

m ◦K and kins = 0.25 W
m ◦K .

* The heat flux through the wall should not exceed 40 W
m2 .
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• The temperature at the inner surface is required to be constant and equal to 2 ◦C, while the
outside wall is exposed to convection conditions. The air outside the compartment is at 25 ◦C
and the convection coefficient is h = 5.5 W

m2 ◦K .

T∞ = 25◦C

T = 2◦C

x

y

Problem 7.34

L

a) Determine T (x) and the thickness L of the insulator such that the design satisfies all the
stated requirements, AND the following:

b) Calculate the temperature on the outer surface of the wall and the heat flux through the
wall.

c) Estimate the total heat loss per wall in an hour through, if the wall is 3 m high and 5 m
wide.

7.35 For the oven described by the layered wall shown below, the following data is specified:

– The outer and inner layers are 2 cm each and the in between layer is 6 cm thick, for a
total thickness of 10 cm.

– Thermal conductivity coefficients are given as k1 = 80.4 W
m ◦K (outside layer), k2 =

1.7 W
m ◦K (middle layer) and k3 = 80.4 W

m ◦K (inside layer).

– The temperature inside the oven is 300 ◦C and the convection coefficient for the air inside
is given as 20 W

m2 ◦K . For safety reasons, the temperature of the outside surface should
not exceed 40 ◦C.

x

y

T = 313 K

T∞ = 573 K

(outside) (inside)

Problem 7.35

REQUIRED :

Solve the corresponding ODE to obtain T (x) for each layer. Estimate the heat flux and the
total heat loss per wall per day, if the wall is 1 m high and 1.5 m wide.
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Problem 7.36

7.36 GIVEN : A laterally insulated thin rod, as shown below:

A linearly increasing heat source located at the center of the rod is given by:

ρΦ =
(

x
J

s m2
+ 1

J
s m3

)

Since the rod is insulated along it’s lateral surface, heat flows only in the x direction and
T = T (x).

REQUIRED :

a) Assuming the rod has uniform thermal conductivity coefficient, k, determine the tem-
perature field T (x) inside the rod by integrating the governing differential equation and
applying the boundary conditions.

b) Consider the two cases for thermal conductivity:

kcopper = 398
J

s m ◦K
1)

kNylon = 0.24
J

s m ◦K
2)

Show graphically the temperature distribution T (x) vs. x for these two cases (on the
same plot).

c) Calculate the heat flux in the x direction (heat transfer rate per unit area) to the sur-
roundings at both ends.

7.37 GIVEN : Consider a large plate of glass in a skyscraper in downtown Houston with heat flow
in the x direction only as shown below.

At the left boundary, inside an office, the temperature of the glass surface is measured to be
91.78 ◦F. The outside air temperature is 98 ◦F. The thermal conductivity for the glass is:
k = 1.7 J

m s ◦C and the convection coefficient for the outside air is h = 30 J
m2 s ◦C .

REQUIRED :
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(outside)(inside)

91.78◦F T∞ = 98◦F

Problem 7.37

x

y

0.25 in

a) Integrate the governing differential equation and apply the boundary conditions to de-
termine T (x) and q(x) in the glass. Note: you must convert to consistent units (usually
easier to convert temperature and thickness to metric).

b) What is the temperature at the outside surface of the glass (in ◦C and ◦F)?

c) Plot T (x) and q(x) from part a.

d) How much heat energy is lost through the window in an 8 hr work day if the window is
6 ft wide by 10 ft tall.

– Note: Think about what this means as far as energy needed to keep the office at its current
temperature and where that energy comes from, especially in a 70+ story building.

e) Notice that the air temperature inside the office was not needed above (because the
inside glass surface temperature was known). If the convection coefficient for the inside
air is h = 10 W

m2 ◦C , use the results from previous parts of the problem to determine the
temperature of the inside air.

7.38 GIVEN : Consider a two-layer slab with specified boundary temperatures as shown below.
Heat is assumed to flow only in the x direction (perpendicular to the y-z plane).

x

y

z

22m

1 2
1

2

5

2

W
k

m K

W
k

m K

=
°

=
°

Problem 7.38

REQUIRED :
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a) Determine T (x) in each layer by solving the governing ordinary differential equation
(ODE) for each slab and applying the boundary conditions. (i.e. solve the system of four
equations and four unknowns for the four constants of integration)

b) Plot T (x) and q(x) for the whole system (both slabs); i.e. only one graph for T (x) and
one graph for q(x).

c) Calculate the heat flux vector through both surfaces (left and right) and at the contact
surface of the two slabs.

d) Calculate the total heat energy flow in 30 min through the right surface if the cross
sectional area of the slab is 2 m2.

7.39 GIVEN : The Copper cooling rod shown below:

Problem 7.39

Note: This is a 2-D problem treated as a 1-D problem!

kCu = 398
J

m s ◦C

ρΦ = −(12500x + 250)
W
m3

x in meters!!

REQUIRED :

1. Find and plot T (x) and q(x) if the heat flux at x = 4 cm is 25 W
m2 .

2. Find and plot T (x) and q(x) if the heat flux at x = 4 cm is 250 W
m2 .

7.40 GIVEN : A driveway in Alberta, Canada as shown below:

hair = 6
W

m2 ◦K
, kground = 0.5

W
m ◦C

, kconcrete = 1.8
W

m ◦C
, kice = 2.2

W
m ◦C

REQUIRED :

a) Calculate the thickness of the layer of ice if the heat flux due to convection is −10 W
m2 .

b) Plot T (x) for all three slabs on one graph and denote (with a horizontal line if x is the
vertical axis) the locations where each slab starts and ends.
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Problem 7.40

Problem 7.41

c) The same as part b) but for q(x).

7.41 GIVEN : A heated driveway in Alberta, Canada as shown below:

hair = 6
W

m2 ◦K
, kground = 0.5

W
m ◦C

, kconcrete = 1.8
W

m ◦C
, kice = 2.2

W
m ◦C

REQUIRED :

a) If t = 1 in, what is the minimum ρΦ
(

W
m3

)
to just melt the ice?

b) Plot T (x) for all three slabs on one graph and denote (with a horizontal line if x is the
vertical axis) the locations where each slab starts and ends.

c) The same as part b) but for q(x).

NOTE: Heat source should be considered to apply uniformly in the x direction throughout the
concrete.

7.42 GIVEN : A two layered fire door comprised of a thin layer of steel and an insulator as shown
below:
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Problem 7.42

The heat flux on the left is qx = 918.5 W
m2 . PAY CLOSE ATTENTION TO UNITS.

hair = 5.5
W

m2 ◦K
, ksteel = 46.73

W
m ◦C

, kinsul = 0.04
W

m ◦K

REQUIRED :

a) Solve the governing ODEs for each layer and determine:
Determine T (x) for each layer and plot T (x) vs x.
Determine q(x) for each layer.
Determine the heat energy flow through 3′ × 7′ door in 1 hour.

b) Same as part a) except solve by the effective resistance method.

7.43 GIVEN : The multi-layer cross section of a house wall (5-6) comprised of brick, wood, insula-
tion, and sheet rock as shown below:

Problem 7.43
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PAY CLOSE ATTENTION TO UNITS.

hair = 5.5
W

m2 ◦K
, kbrick = 0.0066

W
cm ◦K

, kwood = 0.0010
W

cm ◦K
,

kins1 = 0.25
W

m ◦K
, kins2 = 0.04

W
m ◦K

, ksheatrock = 1.1
W

m ◦C
,

REQUIRED :

a) Determine effective resistance, R, for the composite wall.

b) Determine q for the composite wall.

c) Determine the temperature at each boundary and interface.

d) Plot T (x) vs. x for the composite wall.

7.44 GIVEN : A wall consists of two 1 cm thick wood board surfaces enclosing a 10 cm thick cavity
filled with insulation as shown below:

Problem 7.44

REQUIRED : If the thermal conductivity of the wood board and insulation are 0.12 W
m ◦K and

0.04 W
m ◦K , respectively, and free convection conditions exist on the wall exterior surfaces with

a heat transfer coefficient of 2 W
m2 ◦K , find:

a) The temperatures on the two surfaces of the wall if the outside air (to the right of the
wall) is 0 ◦C, and inside air (to the left of the wall) is 20 ◦C.

b) The effective heat transfer coefficient, R, for the wall.

c) The heat flux through the wall.

d) The total heat loss in an hour through the wall if the wall is 3 m high and 5 m wide.
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7.45 GIVEN : In order to design a refrigerating compartment, the following requirements are given:

1. The walls will be composed of two layers of aluminum, each with a thickness of 2 cm;
and a layer of insulation confined between the aluminum walls. The conductivity of the
aluminum and the insulation is given by kal = 247 W

m ◦K and kins = 0.25 W
m ◦K .

2. The heat flux through the wall should not exceed 40 W
m2 .

3. The temperature at the inner surface is required to be constant and equal to 2 ◦C, while
the outside wall is exposed to convection conditions with an outside air temperature of
25 ◦C and the convection coefficient is h = 5.5 W

m2 ◦K .

Problem 7.45

REQUIRED :

a) Determine T (x) and the thickness L of the insulator such that the design satisfies all the
stated requirements.

b) Calculate the temperature of the outer surface of the wall and the heat flux through the
wall.

c) Calculate the total heat loss per wall in an hour through, if the wall is 3 m high and 5 m
wide.

7.46 Consider the case of heat transfer in a thin un-insultated rod shown below. We wish to
determine a simplified solution for this problem.

For this 3-D problem, the heat flux in each coordinate direction is given by:

qx = −k ∂T
∂x

qy = −k ∂T
∂y

∣∣∣
y=± a

2

= h
(
T

(
x,±a

2 , z
)
− T∞

)
qz = −k ∂T

∂z

∣∣
z=± a

2
= h

(
T

(
x, y,±a

2

)
− T∞

)

∣∣∣∣∣∣∣∣
T ( 0, y, z ) = T0

T ( L, y, z ) = TL
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x

y

z

qx (x, t) qx (x + ∆x, t)

h (Ts − T∞)

A

T = T (x, t) = temperature in rod
Ts = surface temperature
T∞ = temperature of the environment
h = coefficient of heat convection

heat loss due
to convection

x

∆x

Problem 7.46

∆x

x

x

A

P

P

Problem 7.40a

While the solution for T (x, y, z ) can be attempted by solving the heat transfer equation in 3-D,
this is difficult because of the mathematics. However, we can simplify the problem by making
the observation that most of the heat flow will be in the direction of the solid due to conduction
(in the x direction). Only a small amount of heat flow will occur normal to the x-axis within
the solid by conduction and out the perimeter of the solid rod by convection. Consequently,
to approximately solve the heat conduction equation in an un-insulated rod, one assumes
that it is a one-dimensional solid and that the temperature distribution is approximately 1-D,
i.e., T = T (x) only for the steady state and T ( x, t ) for the time-dependent case. The heat
conduction equation becomes:
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ρĈ
∂T

∂t
= +k∇2T + ρΦ =⇒ ρĈ

∂T

∂t
( x, t ) = k

∂2T

∂x2
(x, t ) + ρΦ( x, t )

However, since the perimeter is un-insulated, there will be heat loss through the perimeter
boundary that must be account for. We can do this by defining a heat loss term Φ for the
1-D geometry whose magnitude is equal to the heat loss that would occur in the actual 3-D
problem. The term ρΦ can be approximately taken to be equal to

ρΦ =
−h(T − T∞)P∆x

A∆x
= −h(T − T∞)

P

A

(
J

m3 - s

)

where P is the perimeter of the boundary as shown above.

a) Explain and justify the use of the heat loss term.

b) Determine the solution for T (x) for the steady state case.


