Published Journal Papers Brochures Monthly Newsletter
 
 
 
 
 
Journal Papers
 

The following is a list of all publications generated by the Foundation Coalition, listed by author. These documents require the use of the Adobe Acrobat software in order to view their contents.

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

E

1992

  • Erdman, C.A., Glover, C.J., Willson, V.L., 1992, “Curriculum Change: Acceptance and Dissemination,” Proceedings of the Frontiers in Education Conference.
  • Glover, C.J., Erdman, C.A., 1992, “Overview of the Texas A&M/NSF Engineering Core Curriculum Development,” Proceedings of the Frontiers in Education Conference.

    Abstract: In an effort to encourage new approaches to teaching engineering, the National Science Foundation has supported the development of four new courses at Texas A&M University build a solid TAMU). These new courses are designed to foundation for further engineering study and practice and are intended to replace the content normally taught in a set of “core” engineering sciecne courses. This paper addresses the overall philosophy and approach of the program and the roles of each of the four courses. Other elements of the program and details of the courses are discussed elsewhere.

    Briefly, the motivation for this project arose out of several concerns which have been expressed at national engineering education meetings. These are discussed elsewhere1 but are summarized as 1) a national concern for the state of engineering education, 2) a recognition of the fact that technology h as been changing faster than education, 3) a need for more efficiency in education as the body of knowledge grows, and 4) a need more creative design content. As a result, it was concluded that a need existed for a radical change in the engineering science core course concept.

  • Everett, L.J., 1992, “TAMU/NSF Engineering Core Curriculum Course 3: Understanding Engineering via Conservation,” Proceedings of the Frontiers in Education Conference.

1995

  • Barrow, D., Bassichis, W., DeBlassie, D., Everett, L.J., Imbrie, P.K., Whiteacre, M.M., 1995, “An Integrated Freshman Engineering Curriculum, Why You Need It and How To Design It,” Proceedings of the Frontiers in Education Conference.

    Abstract: The Foundation Coalition (FC) is a seven school coalition working to define the undergraduate engineering curriculum for the next century. One goal of the project is to produce a technology rich, active learning environment for undergraduate engineers. There are three facets to the FC curriculum development philosophy at A&M:

    1) Curriculum Integration,

    2) Technology Utilization,

    3) Active/Cooperative Learning and Teaming.

    This paper discusses these facets and highlights the Texas A&MFreshman Curriculum Integration Team's (TAFCIT) achievements over the last year.

    Curriculum integration means typical first year courses (Engineering Problem Solving, Calculus, Graphics, Physics and English) are tightly coordinated to form a mutually supportive environment. Although students receive individual credit in each course, the courses are truly co-requisite. Each course strives to bring relevance to the others, often presenting different aspects of a common problem. Material presentation timing provides students with a ``need to know before knowledge'' sequence. Information and skills introduced in one course are promptly and regularly espoused in at least one other.

    This paper will discuss the philosophy and motivation behind an integrated curriculum and the process used in its development. The paper will continue with a discussion on classroom implementation including how to develop lesson plans, schedule classes, gather and use student feedback. Although the first year is not yet complete, we will give some preliminary results, and discuss our plans and concerns.

  • Roedel, R.J., Kawski, M., Doak, B., Politano, M., Duerden, S., Green, M., Kelly, J., Linder, D., Evans, D.L., 1995, “An Integrated, Project-based, Introductory Course in Calculus, Physics, English, and Engineering,” Proceedings of the Frontiers in Education Conference.

    Abstract: Arizona State University is a member of the NSF-sponsored Engineering Education Coalition known as the Foundation Coalition. This paper describes the development of an integrated introductory course delivered to freshman engineering students at ASU in the Fall '94 semester as a part of the Foundation Coalition program.

    The course combined and integrated material from introductory courses in calculus, physics, English composition, and engineering, normally taught in a stand-alone format. The calculus used in this course was based on the ``Harvard reform model'' and include d a review of functions, the derivative, the definite integral, and application of these topics to physics and engineering problems. The physics was mechanics-based, with emphasis on kinematics, dynamics, conservation principles, rotational motion, and re lativity.

    What differentiated this integrated package from versions found at other institutions in the Coalition was (a) the inclusion of English composition, and (b) the project-based introduction to engineering. In this integrated course, the students learned to organize and develop ideas for both technical and general audiences. In addition, they learned the use of rhetorical principles with readings from the philosophy of science, engineering case studies, and so on.

    The over-arching framework for the class was the use of engineering projects to teach design and modeling principles. The three projects incorporated the calculus and physics that had been learned to date in the class. The first utilized kinematics and curve-fitting to functions to design and build a simple projectile launcher; the second employed dynamics and numerical integration to design and build a bungee drop system; and the third project, which also served as the final exam, used rotational motion concepts and a data acquisition system to identify the shape and material of a hidden object.

    The integrated course also employed considerable use of computers in an active learning environment that stressed teaming and other quality tools.

  • Evans, D.L., 1995, “Curriculum Integration at Arizona State University,” Proceedings of the Frontiers in Education Conference.

    Abstract: The freshman and sophomore integrated curricula developed at Arizona State University under the auspices of the NSF-funded Foundation Coalition are briefly described. The freshman program is currently in a second generation pilot while the sophomore program is in a first generation pilot. Problems encountered in designing and implementing such curricula are discussed as are possible solutions where they have been found.

  • Griffin, R.B., Everett, L.J., Keating, P.B., Lagoudas, D., Tebeaux, E., Parker, D., Bassichis, W., Barrow, D., 1995, “Planning the Texas A&M University College of Engineering Sophomore Year Integrated Curriculum,” Fourth World Conference on Engineering Education, St. Paul, Minnesota, October 1995, vol. 1, pp. 228-232.

1996

  • Doak, B., McCarter, J., Green, M., Duerden, S., Evans, D.L., Roedel, R.J., Williams, P., 1996, “Animated Spreadsheets as a Teaching Resourse on the Freshman Level,” Proceedings of the Frontiers in Education Conference.

    Abstract: Computer animation can serve as a powerful teaching tool. Too often, however, interactive computer animation degenerates into a video game, with students blithely entering data and enjoying "gee-whiz" graphics while managing to ignore completely the underlying physics and math - the understanding of which is the actual intent of the animation! Such unfocused trialand- error engagement can be largely avoided if the animation is introduced as a tool rather than as a "black box." Spreadsheets lend themselves very well to this. One simple, easily-understood macro to "step" time is all that is required. Graphs based on formulas referencing this time immediately become animated. If the student has entered and understood the spreadsheet formulas in the first place, the animation is a completely natural extension of a familiar tool. The visual impact is just as great as with more sophisticated animation but is a natural outgrowth of the underlying physics and math rather than being simply the output of a "black box."

  • Everett, L.J., 1996, “Experiences in the Integrated Sophomore Year of the Foundation Coalition at Texas A&M,” Proceedings of the ASEE Annual Conference.
  • Evans, D.L., Doak, B., Duerden, S., Green, M., McCarter, J., Roedel, R.J., Williams, P., 1996, “Team-Based Projects for Assessment in First Year Physics Courses Supporting Engineering,” Proceedings of the Frontiers in Education Conference.

    Abstract: Two team-oriented, project-based exercises developed and used for student assessment in an integrated freshman program are described. These projects allow assessment of student progress toward meeting desirable student outcomes such as ability to work in teams, ability to communicate, and able to apply science and engineering to the solution of problems. One project involves measurement of the velocity of a projectile; the other one involves the measurement of the ambient magnetic field strength. Lists of parts supplied to each student team are include as are photos and sketches of the more complex pieces of equipment. Student comments and faculty roles are also discussed.

  • Roedel, R.J., Evans, D.L., Doak, B., Kawski, M., Green, M., Duerden, S., McCarter, J., Williams, P., Burrows, V., 1996, “Use of the Internet to Support an Integrated Introductory Course in Engineering, Calculus, Physics, Chemistry, and English,” Proceedings of the Frontiers in Education Conference.

    Abstract: Arizona State University has been offering an introductory course that integrates engineering design and modeling, calculus, physics, chemistry, and English through the Foundation Coalition, an Engineering Education Coalition sponsored by the National Science Foundation. One of the critical components of courseware developed through the Foundation Coalition is the infusion of technology enhanced education. This paper will describe the use of the Internet, through the World Wide Web and through videoconferencing, to support this introductory course. It is interesting to note that the success of Internet usage is directly tied to the performance of the net. That is, when Internet traffic or bandwidth problems arise, both the students and the faculty become less enthusiastic about using the technology.

1997

  • Jung, I., Ku, H., Evans, D.L., 1997, “A Network-Based Multimedia Computerized Testing Program,” Proceedings of the ASEE Annual Conference.

    Abstract: In this paper, we describe a network-based, multimedia, Quizzer or testing tool that has been developed for authoring and delivering electronic quizzes/tests. We demonstrate this tool and compare it with traditional paper-based tests. The tool has been classroom tested and will be available for potential users.

    Quizzes are easily constructed, updated or built from test item databases by using this tool. Graphics (using several graphics file formats) for questions and/or answers are easily incorporated as are digital video clips (AVI files). This tool is well suited for pre- and postexams, student assessment, and self-evaluations.

  • Griffin, R.B., Everett, L.J., Lagoudas, D., 1997, “Development of a Sophomore Year Engineering Program at Texas A&M University,” Proceedings of the Frontiers in Education Conference.

    Abstract: Texas A&M University is a member of the Foundation Coalition. This program, funded by the National Science Foundation, has been working on the educational reform at Texas A&M and the other schools for four years. The Sophomore Team at Texas A&M University began working on the development of a series of engineering science courses in late fall of 1994. The first courses were taught in fall 1995. This paper will discuss the development of the courses and the institutionalization of them within the College of Engineering at Texas A&M University.

    The goals of the coalition are: active and collaborative learning, teaming, and the use of technology in the classroom.

    The Foundation Coalition sophomore engineering educational program was based on the above goals and the use of conservation principles to describe engineering systems. iv The five courses, the sequencing of the courses, and engineering areas covered are shown in the following table.

    An effort has been made to evaluate the effectiveness of the program. One measure was to examine the grade point ratios of students in the coalition and in the traditional program. Another is to use similar examination questions and compare the results. This has been done for three of the courses and the results will be presented and discussed. The assessment and evaluation area is important and considerably more work needs to be done. An assessment and evaluation plan will be described, and future plans for the coalition activities will be discussed.

  • Everett, L.J., 1997, “Dynamics as a Process, Helping Undergraduates Understand Design and Analysis of Dynamic Systems,” Proceedings of the ASEE Annual Conference.

    Abstract: Although the first course in Engineering Dynamics often occurs early in the undergraduate career and most faculty call the material fundamental, it is neither easy to teach nor to learn. This paper proposes what might be a better method of teaching Dynamics. For the reader who teaches undergraduate Dynamics, this paper will provide detail about how to teach the class. For other readers, the contribution is to suggest, and demonstrate with results from one class experiment, that Engineering Analysis can be taught effectively by concentrating on process.

    The essence of the method is to teach Dynamics as a problem-solving process. By teaching process rather than facts, students build links between equations and Engineering. Students develop an understanding of why things act as they do, why assumptions are made and when they are valid. This understanding allows them to handle more general problems without having specific examples to mimic.

    This paper outlines a Dynamics class that accomplishes the following:

    1) Addresses a student's mistaken intuition by confronting these mistakes and reasoning why the error was made.

    2) Provides the student with a process for real-world problems. Here, real-world is defined as problems in which assumptions have to be made, tested and solutions verified.

    3) Provides the student with design rules and the clear distinction between these rules and rigorous analysis.

    The class has been taught once and results show that students can learn to work tough dynamics problems. Students perform exam problems “unlike” homework demonstrating they have understood concepts and principles. Results in follow on classes are inconclusive at the present time, but suggests the knowledge is retained better.

  • Roedel, R.J., Green, M., Garland, J., Doak, B., McCarter, J., Evans, D.L., Duerden, S., 1997, “Projects that integrate engineering, physics, calculus, and English in the Arizona State University Foundation Coalition freshman program,” Proceedings of the Frontiers in Education Conference.

    Abstract: The Foundation Coalition at Arizona State University has been offering a novel first year program in engineering for the last three years.[1-5] This program integrates coursework in English composition and rhetoric, calculus, freshman physics, and introductory engineering concepts through student projects. The projects increase in complexity as the term progresses, to keep pace with students' increasing knowledge of science and engineering. The purpose of this paper is to describe the projects, the process used to deliver them, and their impact on the learning in this class.

  • Duerden, S., Graham, J.M., Garland, J., Doak, B., McCarter, J., Roedel, R.J., Evans, D.L., Williams, P., 1997, “Scaling Up Arizona State University's First-Year Integrated Program in Engineering: Problems and Solutions,” Proceedings of the Frontiers in Education Conference.

    Abstract: This paper discusses how scale-up from a pilot of 32 students to 80 students affected the integrated delivery of material in English composition, physics, and engineering to a cohort of freshman engineering students. It also discusses how collaborative learning and projects were structured to fit 80 students, the effects of class size on student-to-student interaction and student-to-faculty interactions in and out of the classroom, and what modifications were made to the classroom facilities to accommodate these projects. Although there were some detrimental effects accruing to the scale-up, for the most part, student performance was unaffected or slightly improved.

  • Duerden, S., Green, M., Garland, J., Doak, B., McCarter, J., Roedel, R.J., Evans, D.L., Williams, P., 1997, “Trendy Technology or a Learning Tool? Using Electronic Journaling on Webnotes for Curriculum Integration in the Freshman Program in Engineering at ASU,” Proceedings of the Frontiers in Education Conference.

    Abstract: Lately, technology has transformed our world, with millions of users negotiating everything from purchasing goods to accessing research. The pressure to embrace this technology has grown to the point that even in the composition classroom, instructors are exploring ways to most profitably use it. Given the growth and commercialism of the World Wide Web (WWW), it is not always easy to distinguish the hype from the useful. However, one worthwhile application is WebNotes¥,[1] a commercial, WWW-based electronic forum software product that has become a powerful journaling tool for fostering connections, delivering information, and creating an online community in and out of the classroom. In our first two iterations of the NSF Foundation Coalition integrated program for first-year students at Arizona State University, we used journaling to encourage students to connect their classes by explaining math, physics, or engineering concepts to the non-specialist (English teachers), discussing teaming and teaming issues, and providing feedback. Before the use of WebNotes¥, the English teachers collected the journals and passed them on to the other faculty members, usually in the space of one week, causing many logistical problems. With Webnotes, students now write entries in a word processing program, which encourages them to check spelling and grammar, and then they paste them into a WebNotes¥ forum. The faculty can then read the entries at their convenience and respond to each student via e-mail. These entries can be kept hidden from other students until or unless the moderators (faculty) choose to release them. Assessment of student responses to this form of journaling, in the form of anecdotes and a survey, has been very positive. Students like the individual and immediate responses they receive via e-mail -- always a popular form of communication with students. Moreover, they appreciate the fact that multiple faculty may read a single entry. As a learning tool, an integration tool, and a feedback tool, this technology has proved that technology is not simply “trendy.” Sometimes it really can enhance learning and communication.

1998

  • Roedel, R.J., El-Ghazaly, S., Aberle, J.T., 1998, “An Integrated Upper Division Course in Electronic Materials and Electromagnetic Engineering - "Wave Phenomena for Electrical Engineers",” Proceedings of the Frontiers in Education Conference.

    Abstract: The Foundation Coalition at Arizona State University offered for the first time a novel upper division integrated course in Electrical Engineering in the Fall ’97 semester. This first offering combined two upper division courses into an integrated class that sought to reduce the compartmentalization and emphasize the substantial overlap of the separate courses. The courses involved were (1) an introduction to the properties of electronic materials and (2) the first course for EE majors in electromagnetic engineering. The main thread that integrated the two courses was “wave phenomena.” This paper will discuss the organization of the course, the nature of the course integration, details about the technology infusion, and a brief description of the tool used to carry out assessment of the course and the students’ performance.

  • Villareal, S., Wynn, C., Eastwood, D., Zoghi, B., 1998, “The Design, Development, and Evolution of Web-Based Materials Featuring Computer-Animated Simulations,” Proceedings of the Frontiers in Education Conference.

    Abstract: The need for more efficient and more effective teaching techniques led us to begin developing Computer Aided Instruction (CAI) modules featuring Computer Animated Simulations (CAS) in 1993. In this paper, we review the design, development and evaluation of our initial desktop CAI/CAS modules in two stages before presenting our most recent experience in developing and evaluating these materials in a web-based format. In the initial stage of desktop CAI development, we obtained valuable insight into ways to improve the animated simulations through informal student feedback and ongoing formative evaluation. A summative evaluation of this first stage consists of an analysis of actual test scores. This study shows that semesters using the desktop CAI are not statistically different from semesters not using these materials. However, we note that presentation time in both lecture and lab are significantly reduced by applying these modules.

    The second stage of desktop CAI evaluation began after most of the suggestions from the initial stage had been incorporated. The evaluation of the desktop CAI in the second stage consists of a more direct measurement comparing pre-test and post-test scores for students conducting lab exercises in either the traditional hands-on assignment or in the CAI/CAS format. This study also shows no statistical difference between the two groups of students. However, this review demonstrates the importance of student feedback in both formative and summative evaluations and several key benefits of the CAI/CAS format.

    Lastly, this paper presents our most recent development strategy for enhancing these materials and for converting them into a web-based format. Due to our disappointing experience with commercial web-authoring software, our strategy changed to a “from scratch” approach using inexpensive and easy to use web-based development tools. Cost for these tools, development time estimates and results of an informal evaluation of our first two web-based modules are also reported. A more rigorous evaluation of these web-based materials is planned with findings similar to those for the desktop CAI/CAS modules anticipated.

  • Roedel, R.J., El-Ghazaly, S., Reed-Rhoads, T., El-Sharawy, E., 1998, “The Wave Concepts Inventory - An Assessment Tool for Courses in Electromagnetic Engineering,” Proceedings of the Frontiers in Education Conference.

    Abstract: The Foundation Coalition at Arizona State University offered for the first time a novel upper division integrated course in Electrical Engineering in the fall’97 semester. The courses involved were (1) an introduction to the properties of electronic materials and (2) the first course for EE majors in electromagnetic engineering. The main thread that integrated the two courses was “wave phenomena.” To determine whether this integration successfully teaches the students in wave phenomena, we developed an assessment tool, which we have called the Wave Concepts Inventory. This paper will describe in detail the organization of the Waves Concepts Inventory and its use in assessing upper division students in their understanding of wave concepts.

1999

  • Everett, L.J., Alexander, R.M., Wienen, M., 1999, “A Grading Method That Promotes Competency and Values Broadly Talented Students,” Journal of Engineering Education, 88:4, 477-483.

    Abstract: This paper reports the results of a recent experiment in student performance evaluation. A criterion-referenced, rather than the typical norm-referenced scheme, was supplemented with a reward system designed to value students with a diverse set of academic talents. For example, the ability to solve "traditional looking" engineering analysis problems and the ability to thoroughly explain how phenomena occur (independent of the ability to work to a final "answer") were equally valued. Value was measured by the course grade. The goals of the experiment were: (1) to ensure that all students who succeeded in the class possessed a baseline competence in the subject matter; (2) to value (in the form of high grades) a diverse set of talents; and (3) to encourage students to develop good learning habits. The experiment was implemented by teaching a sophomore core engineering course with a team of two faculty members and two graduate teaching assistants handling 187 students. One faculty member was responsible for the classroom teaching activities while the other focused exclusively on developing and implementing the evaluation instruments. The instruments consisted of four types of examinations, each designed for a specific purpose and administered at distinct times during the semester. Quantitative results, including associated statistical analyses, are given. We conclude that it is possible to establish criterion-referenced schemes that value student skill diversity while encouraging good study and learning habits. The assessment instruments, however, are psychologically stressful to many students who are unaccustomed to them.

  • Cordes, D., Evans, D.L., Frair, K., Froyd, J.E., 1999, “The NSF Foundation Coalition: The First Five Years,” Journal of Engineering Education, 88:1, 73-77.

    Abstract: The Foundation Coalition was funded in 1993 as the fifth coalition in the National Science Foundation's Engineering Education Coalitions Program. The member institutions-Arizona State University, Maricopa Community College District, Rose-Hulman Institute of Technology, Texas A&M University, Texas A&M University - Kingsville, Texas Woman's University, and the University of Alabama - have developed improved curricula and learning environment models that are based on four primary thrusts: integration of subject matter within the curriculum, cooperative and active learning, technology-enabled learning, and continuous improvement through assessment and evaluation. This paper discusses the first five years of Coalition activities and major accomplishments to date.

2000

  • Everett, L.J., Imbrie, P.K., Morgan, J.R., 2000, “Integrated Curricula: Purpose and Design,” Journal of Engineering Education, 89:2, 167-175.

    Abstract: This paper has two objectives: 1) to define, describe, and discuss integrated programs and their advantages with regard to student and faculty outcomes, as well as student retention; and 2) to describe a design process used to successfully develop and deploy an integrated first year curriculum. This paper details the results of the design process and the content of the first year integrated program implemented by the College of Engineering at Texas A&M University. The curriculum integrates the first year components of calculus, chemistry, engineering graphics, English, physics, and problem solving.

2001

  • Courter, S.S., Lewis, D., Reeves, J., Eapen, J., Murugesan, N., Sebald, D., 2001, “Aligning Foundation Coalition Core Competencies and Professional Development Opportunities: A University of Wisconsin-Madision Case Study in Preparing a New Generation of Engineers,” Proceedings of the Frontiers in Education Conference.

    Abstract: Faculty within the Foundation Coalition (FC) are working together to prepare a new generation of engineers by strengthening both undergraduate and graduate students’ educational foundations and helping them develop core competencies. The coalition links together six institutions: Arizona State University, Rose-Hulman Institute of Technology, Texas A & M University, University of Alabama, University of Wisconsin-Madison, and University of Massachusetts- Dartmouth. Partner institutions are diverse in terms of size, age, public/private, student body characteristics, and experience in educational reform, but all share a commitment to the improvement of engineering education. With the goal of student learning in mind, the Foundation Coalition defines core competencies to be the abilities that educators must develop, continuously improve, and use in order to “create a new culture of engineering education that is responsive to technological changes and societal needs” – the FC vision. The core competencies are curriculum integration; cooperative and active learning; utilization of technology-enabled learning; assessment-driven continuous improvement; recruitment, retention, and graduation of women and under-represented minorities; teamwork and collaboration; and management of change. The University of Wisconsin-Madison helps faculty, staff, and teaching assistants develop and use these core competencies in myriad ways.

    This paper describes two professional development opportunities at the University of Wisconsin- Madison, College of Engineering: the New Educators’ Orientation (NEO) and the Teaching Improvement Program (TIP). While NEO introduces the core competencies, each TIP workshop incorporates one or more of the FC competencies. The program director and graduate student cochairs use the competencies to guide workshop selection and design. This paper traces the development of both NEO and TIP; the incorporation of the FC core competencies, vision, mission, student outcomes, and objectives; the impact on curricula as reported on evaluations; lessons learned; and plans for future professional development opportunities. Four case studies illustrate how graduate students, the next generation of engineers, develop the core competencies through professional development opportunities including TIP and NEO.

  • Richardson, J., Morgan, J.R., Evans, D.L., 2001, “Development of an Engineering Strength of Material Concept Inventory Assessment Instrument,” Proceedings of the Frontiers in Education Conference.

    Abstract: This paper discusses development of an instrument for assessing undergraduate student understanding of fundamental strength of materials concepts. The instrument was modeled after the Force Concept Inventory (FCI) by David Hestenes and others. Like the FCI, the strength of materials concept inventory is brief, requires no computation and should be repeatable across broad student populations. The initial version of the instrument was tested on strength of materials students at the University of Alabama, Texas A&M University, and other institutions. A Beta version of the instrument will be available at the conference.

  • Midkiff, C., Litzinger, T.A., Evans, D.L., 2001, “Development of Engineering Thermodynamics Concept Inventory Instruments,” Proceedings of the Frontiers in Education Conference.

    Abstract: Preliminary instruments for the assessment of undergraduate engineering student understanding of fundamental thermodynamics concept are presented. The Thermodynamics Concept Inventory (TCI) instruments are patterned after the existing Force Concept Inventory (FCI) instruments. Numerous studies have supported the efficacy of pre- and post-course administration of the FCI as a means of assessing the effectiveness of educational reform activities. The objective of the work reported here is to develop similar instruments for the assessment of engineering thermodynamics. Like the FCI, the Thermodynamics Concepts Inventory (TCI) instruments should be brief, require minimal or no computation, should produce repeatable results across broad, diverse student populations, and should succinctly assess student understanding of fundamental thermodynamics concepts. The availability of such TCI instruments will allow faculty to compare the pre- and post-course performances of a class, to compare the performance of their class to that of classes at other institutions, and to evaluate the effectiveness of educational reform efforts. Although the preliminary (“beta”) versions of the TCI reported here are aimed at mechanical engineering students, they should be suitable for use in other engineering disciplines with slight modification. In mechanical engineering, it is common to teach thermodynamics in a two-semester sequence of courses. Consequently, two versions of the TCI are presented, an introductory version and a more advanced version for second-semester students. Sample questions from the TCI instruments are exhibited here, and results of preliminary testing of the inventory on small student populations are discussed. Beta versions of the TCI are available at the FIE conference. The authors are seeking interested faculty to conduct beta tests during the 2001-2002 academic year.

  • Evans, D.L., Hestenes, D., 2001, “The Concept of the Concept Inventory Assessment Instrument,” Proceedings of the Frontiers in Education Conference.

    Abstract: The well-known Force Concept Inventory (FCI) instrument has been in use over the last 15 years and is now credited with stimulating reform of physics education. An instructor can give the FCI as both a pre-test and as a posttest to produce data that can be used in a continuous improvement manner to evaluate the effectiveness of various instructional strategies. This presentation will review the development and history of the FCI from the standpoint of what makes it so effective for this use. This presentation will be a lead-in to presentations at this conference of four new Concept Inventories, two in thermodynamics (one for a first year course and one for a second year course), one in signals and processing, and one in strength of materials. Other Concept Inventories are known to exist or are being created (e.g., wave phenomenon for electrical engineers and energy principles in physics).

2002

  • Ledlow, S., White-Taylor, J., Evans, D.L., 2002, “Active/Cooperative Learning: A Discipline-Specific Resource for Engineering Education,” Proceedings of the ASEE Annual Conference.

    Abstract: While general information on the use of active/cooperative learning (A/CL) in higher education is increasing, discipline-specific resources, especially materials for science, technology, engineering and mathematics education, are still relatively rare. A frequent comment from engineering faculty who don’t use active/cooperative learning is that they don’t understand how this form of pedagogy and classroom management strategies can apply to their subject or to their classroom. Too often these strategies are brushed off with comments about them only applying to the “softer” subjects taught on the “other side of campus” – but certainly not to the rigorous and complex technical subjects of engineering.

    Reported in this paper is information on Active/Cooperative Learning: Best Practices in Engineering Education, an online repository of engineering-specific ideas, testimonials, and teaching strategies to stimulate and aid faculty in trying and adopting a different look, feel and performance for the classroom. While the project does contain some general information on A/CL, the bulk of the content is specific to engineering education, and was derived from interviews with engineering faculty on multiple campuses. Materials are organized so that they will serve as a useful guide to faculty who have never used cooperative learning, but will also provide sufficient depth that more experienced faculty and faculty developers may benefit from them as well. The CD contains essentially the same content as the website, but will be provided to those whose Internet connections will not easily access large video or audio files.

2003

  • Evans, D.L., Gray, G.L.., Krause, S.J., Martin, J.K.., Midkiff, C., Notaros, B.M., Pavelich, M., Rancour, D., Reed-Rhoads, T., Steif, P., Streveler, R., Wage, K.E., 2003, “Progress on Concept Inventory Assessment Tools,” Proceedings of the Frontiers in Education Conference.

    Abstract: The Foundation Coalition and others have been working on the development of Concept Inventory (CI) assessment instruments patterned after the well-known Force Concept Inventory (FCI) instrument of Halloun and Hestenes. Such assessment inventories can play an important part in relating teaching techniques to student learning. Work first got started two years ago on CIs for the subjects of thermodynamics, solid mechanics, signals and processing, and electromagnetics. Last year work got under way on CIs for circuits, fluid mechanics, engineering materials, transport processes, and statistics. This year work began on chemistry, computer egineering, dynamics, electronics, and heat transfer. This panel session will discuss the progress on these concept inventories. More importantly, the panelists will discuss the early student data that are emerging from the process of continuous improvement of the instruments. Results will be compared to the data collected by Hake that are segregated by how the content was managed and delivered (e.g., "traditional" lecture mode compared to the "interactive engagement" mode, as defined by Hake). Discussions of effective practices for use in the development of CIs will also be discussed.

  • Gray, G.L.., Evans, D.L., Cornwell, P.J., Costanzo, F., Self, B., 2003, “Toward a Nationwide Dynamics Concept Inventory Assessment Test,” Proceedings of the ASEE Annual Conference.

    Abstract: This paper describes our efforts to develop a national concept inventory test in undergraduate dynamics, that is, a Dynamics Concept Inventory. This paper presents the current state of development and discusses future efforts and directions of this project.

 
 

Related Links:

Togel178

Pedetogel

Sabatoto

Togel279

Togel158

Colok178

Novaslot88

Lain-Lain

Partner Links