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Abstract

This paper describes a new paradigm for integrating engineering courses—a systems, conserva-
tion and accounting, and modeling approach. The paper presents a historical background of this
approach and discusses the motivation. The overall framework is presented, including the impor-
tant concepts and definitions, the basic conservation and accounting equations, and a common
problem solving approach. A detailed development is presented for conservation of linear mo-
mentum to illustrate how the equations are developed. Several examples are included to demon-
strate how students solve problems using problem-specific models developed from the general
equations instead of using a “plug-and-chug” approach. Experience with using this approach for
teaching and curriculum design is discussed. Results to date indicate that this approach can im-
prove student performance and help them develop a more integrated understanding of material
that has traditionally been taught as unrelated topics.

Introduction

Imagine for a moment what it is like to be a freshman or sophomore engineering student. After a
heavy dose of physics, chemistry, and mathematics, you are excited to finally be taking engineer-
ing courses. Although you may have done well in physics, you discover that engineering courses
are noticeably different, and you may struggle with them. Faced with a plethora of apparently un-
related courses, you (and sometimes the faculty teaching the courses) miss the underlying con-
cepts and themes. To you, it seems these courses are a set of unrelated topics each with its own
special set of tricks.

As faculty teaching these courses, we are frequently struck by our students’ failure to make con-
nections. Why can’t they see the connections? Who among us hasn’t felt frustration when a stu-
dent asks “Which free-body diagram do you want, the physics one, the statics one, the dynamics
one, or the one from fluid mechanics?”  Or “Which energy balance should I use, the one from
physics, dynamics, fluid mechanics, heat transfer, or thermodynamics.”a

                                               
a My thanks to Lynn Bellamy and Don Evans for sharing the stories underlying these quotations.
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Out of this frustration, faculty members continually seek ways to help our students understand the
material, especially to see the connections between what students perceive as unrelated material. 
Transfer of learning from one course to another is one of the effects most sought after by educa-
tors and one of the most difficult to produce (or at least observe) in our students. Rugarcia,
Felder, Woods, and Stice in an excellent article1 on the future of engineering, stress that both
components of engineering education—knowledge and skills—should focus on the big picture.
This issue was also discussed in a recent white paper on thermal systems education2.

Now recall your first days as a graduate student. As you reviewed notes from a week of classes, it
suddenly dawned on you that you had just spent the entire week developing the same set of equa-
tions—possibly the differential form of the conservation equations for mass, energy, and momen-
tum—in all your courses. The developments and possibly the notation differed but the underlying
concepts were the same. Suddenly the light went on; you began to see how everything fit to-
gether. Why hadn’t anyone told you this earlier?

In 1988, a group of faculty members at Texas A&M University began work on a new integrated
curriculum to replace the core engineering science courses within the typical engineering curricu-
lum. The result was an interdisciplinary sequence of four courses called the Texas A&M/NSF En-
gineering Core Curriculum3 organized around what they called the conservation and accounting
principle. Glover, Lundsford, and Fleming produced an introductory textbook4 that used this ap-
proach. Similar calls to consider a systems approach also come from physicists5, 6

.

In 1993, seven schools came together as the Foundation Coalition under the auspices of the NSF
Engineering Education Coalitions Program. One of the major thrusts of this group was curriculum
integration. Building on the early work at Texas A&M, Texas A&M and Rose-Hulman developed
new sophomore engineering curricula organized around the conservation and accounting principle
to help students see the connections within their courses. At Texas A&M, this resulted in the
Sophomore Engineering Science Sequence consisting of five courses covering mechanics, ther-
modynamics, materials, continuum mechanics, and electrical circuits and electronics.7 At Rose-
Hulman, this resulted in a new core curriculum called the Rose-Hulman/Foundation-Coalition
Sophomore Engineering Curriculum (SEC). The SEC is a required eight-course sequence of en-
gineering science and mathematics courses completed during the sophomore year. The SEC cov-
ers dynamics, fluid mechanics, thermodynamics, electrical circuits, system dynamics, differential
equations, matrix algebra, and statistics.8

This paper describes a new paradigm for organizing an engineering core—a systems, conservation
and accounting, and modeling approach—that emphasizes the underlying concepts upon which
engineering science is based and provides students a framework for recognizing and building con-
nections as they learn new material. Although applicable to most engineering disciplines, this ap-
proach is especially applicable to the mechanical engineering core because of its breadth. The goal
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of the paper is to introduce the basic approach and challenge you to consider how this might help
your students.

Common Concepts in the Core

For purposes of discussion, let’s assume that the mechanical engineering core consists of eight
courses: statics, dynamics, mechanics of materials, fluid mechanics, thermodynamics, heat trans-
fer, electrical circuits and system dynamics (See Figure 1).

What are the common threads that run through these courses? From a student’s perspective, you
might ask yourself some concrete questions: “How do Newton’s laws in dynamics relate to the
integral-momentum equation in fluid mechanics?” or “How does the work-energy principle in dy-
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namics relate to the mechanical energy balance in fluid mechanics and the general energy balance
in thermodynamics?” Most faculty members would recognize that problem solving is a major
thread.

Before you can begin to solve a problem, you must carefully read the problem statement. Before
you can do any analysis, you will typically develop a mathematical model. To do this, you must
first isolate a part of the physical world and identify the system. Next you must describe the state
of the system and identify its important properties. Then you must identify the processes that
change the state of the system and the interactions the system has with its surroundings during
these processes.

Once you have done this, you will apply the fundamental principles or laws, e.g. Newton’s laws,
the first and second laws of thermodynamics, conservation of charge, conservation of mass, etc.
These are bedrock accounting principles used to keep track of important extensive properties
like mass, charge, energy, linear momentum, angular momentum, and entropy. Five of these are
conserved properties and the sixth one, entropy, can only be generated.

As you continue your solution, you will make modeling assumptions to capture the essential
features of the problem and select constitutive relationships to supplement the fundamental
laws. With this information collected, it is now possible to solve the problem.

If you have not been referring back to Figure 1, do so now and look for the terms you find famil-
iar. As you reflect on the lists, you will recognize that each course has its own special term for a
generic concept.  You will find definitions in Figure 2 for the bold-faced terms used in the previ-
ous paragraphs.

The Accounting Principle

The underlying organizing principle for this approach is what I will refer to as the accounting
principle. The key ideas here are that every system has associated with it numerous extensive
properties and that the behavior of the system can be determined by monitoring changes in these
properties.  Any change in an extensive property within the system can be accounted for by
counting the amount of the property transported across the system boundary and the amount
generated or consumed inside the system. (An interesting historical discussion of the development
of this principle for open systems (control volumes) is presented by W. G. Vincenti in his fasci-
nating book What Engineers Know and How They Know It9)
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Given a generic extensive property B, it is possible to write a general accounting principle for any
system.  In its simplest form, the accounting principle can be stated in words as follows:

The accumulation of a property within a system equals the transport of the prop-
erty into the system minus the transport of the property out of the system plus the
generation (or production) of the property within the system minus the consump-
tion (or destruction) of the property within the system.

Singling out the various components and illustrating the terms in a more mathematical form we
have the following relation:

Model a purposeful representation.

System a region of space or quantity of matter set aside for analysis.

Property a characteristic of a system that can be assigned a numerical value at a specified time
without considering the history of the system. An extensive property is a property
whose value depends on the mass or extent of the system, e.g. mass, volume, and
energy. An intensive property is a property whose value does not depend on the
extent of the system, i.e. an intensive property has a value at a point. Pressure, tem-
perature, and velocity are all intensive properties.

State of a System a complete description of the system in terms of its properties.

Process the means by which a system changes its state.

Steady-State System a system that behaves in such a manner that all of its intensive properties and inter-
actions with the surroundings are independent of time.

Interaction the transport of an extensive property across a system boundary.

Conserved Property an extensive property that cannot be generated or consumed.

Accounting Principle a simple balance relationship for an extensive property (e.p.):  the accumulation of
an e.p. within a system equals the transport of the e.p. into the system minus the
transport of the e.p. out of the system plus the generation (or production) of the e.p.
within the system minus the consumption (or destruction) of the e.p. within the sys-
tem.

Constitutive Relation a mathematical relationship between variables that describe a physical  phenomenon,
that by its very nature is specific and cannot be applied in general, and is only valid
under a restricted set of conditions.

Figure 2 -- Key Definitions
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This is commonly referred to as the finite-time form of the accounting principle because it is ap-
plied over a specified time interval.

The rate form of the accounting principle can also be written in words; however, it lends itself to a
compact mathematical representation. Three different forms of this relation are presented in Fig-
ure 3 for the generic extensive property B.  Equation (a) in Figure 3 is the most compact mathe-
matical statement of the rate form of the accounting principle clearly showing the means by which
the property can change.  The left-hand side of this equation represents the time derivative, the
rate of change, of the amount of property B inside the system, dBsys /dt. The right-hand side of the
equation gives the transport rates in/outB& and the generation and consumption rates gen/consB& . (Note

that as used here, the “dot” notation does not indicate a derivative, e.g. dB dt B≠ & .)

The amount of extensive property B within the system can be determined by summing up the
amount of B associated with mass inside the system. For discrete masses, this is a simple summa-
tion; for a distributed system, it is calculated by integrating the product bρ  over the volume of the
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system, where b is the intensive form of the extensive property B and ρ is the mass density of the
material in the system (See Figure 3). For a case where b and ρ are both uniform throughout the
system, the amount of B in the system is easily calculated as Bsys = bρVsys.

Because the accounting principle can be applied to both open and closed systems, e.g. systems
with and without mass flow across the boundaries, it is useful to separate out the transport of B
across the boundary with mass flow (Equation (b) in Figure 3).  Any mass that crosses the bound-
ary of the system carries with it some amount of extensive property B, and the rate at which B is
transported across the boundary is the product of the mass flow rate m& and b, the intensive form
of B, i.e. mb& .  This is shown in Equation (c) in Figure 3. The mass flow rate m& is always calcu-
lated using the flow velocity measured relative to the boundary where the flow occurs.

Fundamental Conservation and Accounting Equations

The usefulness of the accounting principle is that it provides a common framework for presenting
and applying the fundamental laws of physics routinely used by engineers. Although not tradition-
ally presented this way for undergraduates, all of these laws can be formulated as conservation or
accounting principles (See Figure 4). When presented using this framework, students can begin to
see the underlying connections early in their education. In the Rose-Hulman / Foundation-
Coalition Sophomore Engineering Curriculum, all of these laws are introduced in a course called
“Conservation and Accounting Principles” using a common approach that builds on a student’s
experience with physics.

As each new principle is introduced, we ask four basic questions to place it in the context of the
accounting principle:

1. What is the extensive property?

2. How can it be stored within and quantified for a system?

3. How can it be transported across the system boundary?

4. How can it be generated or consumed inside the system?

To provide a concrete example, consider the extensive property linear momentum:

1. What is linear momentum? particle particle particlem=P V

The linear momentum of a particle is the product of the mass of the particle m and its ve-
locity V. Students already know this definition from physics. In terms of the accounting
framework, linear momentum P is the extensive property B and the velocity V is the spe-
cific linear momentum corresponding to the intensive property b. (See Figure 3)
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2. How can it be stored within and quantified for a system?  
sys

sys

V

dVρ= ∫P V

To calculate the linear momentum for any system, integrate the product of the specific lin-
ear momentum V and the mass density ρ over the system volume. For a system of discrete
particles, the linear momentum is simply the sum of the linear momentum of all the parti-
cles in the system: sys j j jm= =∑ ∑P P V

3. How can it be transported across the system boundaries? Fexternal   &   mV&

Experience has shown that linear momentum is transported by external forces acting on
the system and by mass flowing across the system boundary. External forces Fexternal are of
two types—body forces produced by fields like gravity and surface (or contact) forces
that have a point of application on the system boundary.  The mass transport of linear
momentum can be written as the product of the mass flow rate and the local velocity
where the mass crosses the boundary, mV& .  With this interpretation, a force is a mecha-
nism for transporting linear momentum and specifically it is a transport rate with dimen-
sions of [Linear Momentum]/[Time].
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4. How can linear momentum be generated or consumed within the system?  gen con 0= =P P& &

Experience has shown that it is impossible to create or destroy linear momentum; hence,
we say that linear momentum is conserved. This means that both the generation and the
consumption terms are identically equal to zero.

Putting this all together using the accounting framework shown in Figure 3, we have the rate-
form of the conservation of linear momentum equation:

sys
external in out

j i i e e

d
m m

dt
= + −∑ ∑ ∑P F V V& &

In words this becomes “ the rate of change of the linear momentum of the system equals the net
transport rate of linear momentum into the system by external forces plus net transport rate of lin-
ear momentum into the system with mass flow.” This then becomes the starting point for solving
any problem involving linear momentum whether it is from statics, dynamics, or fluid mechanics. 
In its most general form, the mass transport terms would be written using integrals over the sys-
tem boundary. This is the form usually developed in fluid mechanics textbooks using the Reynolds
transport theorem. The author’s experience, however, has been that this simpler form will handle
most problems and is easier for students to understand.

It is important to note that this is not the same “conservation of linear momentum” equation found
in many physics and dynamics textbooks. As often used, the phrase “conservation” implies that
the linear momentum of the system is constant as typically occurs in impact problems. This is a
problem-specific assumption, and with this interpretation there are many problems where linear
momentum is not “conserved.” As used in the conservation and accounting framework, saying
that a property is conserved makes a global statement about the way the world works; thus, linear
momentum is always conserved. The linear momentum of a system remains constant only if it is a
closed system and there are no external forces.

Since students are very comfortable applying the familiar equation F = ma, it is important to show
them how this equation is related to the new more general principle. Starting with the rate form of
the conservation of linear momentum as developed above, we need make only one modeling as-
sumption—assume a closed system. As shown below, this single assumptions reduces the general
equation to one that feels more familiar:

sys
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external in out

m

j i i e em m
=

= + −∑ ∑ ∑
V

F V V& &
0
closed system



Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
 Copyright  2001, American Society for Engineering Education

( ) G
sys G sys sys G

external external external
j j j

dd
m m m

dt dt
= → = → =∑ ∑ ∑V

V F F a F

where the “G” subscript refers to the center of mass. In application, when a student starts from
the general relation they must recognize they are modeling a closed system to recover the familiar
result, F = ma. This understanding is frequently lost when students just pull F = ma from memory.
It is the author’s belief that the explicit use of modeling assumptions to develop the problem-
specific relations from a general physical principle helps students understand what is going on and
underscores the limits of their analysis.

Similar equations can be developed for the other fundamental laws and are presented in Figure 4.
Notice that all of these equations with the exception of the one for entropy are conservation laws.
Although we cannot write a conservation relation for entropy, we can write a useful accounting
equation because the second law of thermodynamics does place constraints on the entropy pro-
duction rate, e.g. gen 0S ≥&  and approaches zero under the conditions of an internally reversible

process. Note that all of the equations have a similar format and appearance. Each has an accu-
mulation term and each have transport terms. It is believed that by presenting all of the equations
in a common format students should have an easier time seeing how they are connected.

Problem Solving and Examples

One of the advantages of using the conservation and accounting framework is that it lends itself to
the use of a common problem solving approach regardless of the problem. When a student is

Written Format Typical Questions

• Known • What’s the system?

• Find • What properties should we count?

• Given • What’s the time interval?

• Analysis • What are the important interactions?

-- Strategy • What are the important constitutive relations?

-- Constructing Model • How do the basic equations simplify?

-- Symbolic Solution • What are the unknowns?

-- Numerical Solution • How many equations do I need?

• Comments

Figure 5 -- Problem Solving Format and Questions
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faced with a problem, he or she has a consistent set of questions to ask about the problem. These
are illustrated in Figure 5. Notice how the questions are framed in a manner that is independent of
the specific problem. Because students are asked to construct their solutions beginning with the
basics, they must now focus on how the modeling assumptions simplify the general equations in-
stead of looking for the already simplified equation in the text.

To give you more exposure to this approach, solutions to three typical problems are solved on the
following pages using the conservation and accounting framework. The differences in approach
are most apparent in the formulation of the problem-specific governing relations from the general
equations. Notice how each of the solutions has a system-interaction diagram that identifies trans-
ports of the extensive property across the system boundary.

Example 1 -- Cable Car

Known: A small inspection car is pulled along a fixed overhead cable by a cable attached at point A

Find:  (a)  The magnitude and direction of force R exerted by the overhead cable on the wheels of the
car, in newtons.
(b)  The magnitude and direction of the acceleration of the car, in m/s2.

Given:

T = 2400 N

mcar = 200 kg

θ = 22.6o

Analysis:

Strategy --- Since the problem involves forces, try conservation of
linear momentum.

System: Closed system including only the car as shown in the mo-
mentum system diagram at right.

Property: Linear Momentum
Time Period:  Instantaneous

Without selecting a coordinate system the conservation of linear mo-
mentum equation becomes

= +∑ &
sys

external
j i

d
m

dt
P F V

=
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e ei

m V
=
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where there are only three external forces—the force on the wheels R, the weight of the car mg, and the
cable force T. Also because this is a closed system, the linear momentum of the system Psys = msysVG

where VG is the velocity of the center of mass of the system.  Thus, the conservation of linear momentum
can now be written as

( ) = + + → = + +G
sys G sys sys          sys

dd
m m m m

dt dt

V
V g T R g T R

Now selecting a coordinate system that is aligned with the cable, the conservation of linear momentum can
be written in two components.  In the y direction, the linear momentum equation becomes

( ) ( )θ θ= − ⋅ + − ⋅,
sys sys

,
sys

sin cosG y

G y

dV
m T R m g

dt

dV
m

dt
( ) ( )θ θ

=

= − ⋅ + − ⋅

0
no motion
in y-direction

syssin cosT R m g

Now solving for the force R of the cable on the wheels gives

( ) ( )θ θ= ⋅ + ⋅syssin cosR T m g

Substituting in the numerical information gives

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

°  = ⋅ + ⋅ ° 
 

= +

= +
=

2

m
2400 N sin 22.6 200 kg 9.81 cos 22.6

s

2400 N 0.3843 1962 N 0.9232

922.3 N 1811 N

2733 N

R

In the x direction, the linear momentum equation becomes

( ) ( )
( ) ( )

( )

θ θ

θ θ
θ θ

= ⋅ − ⋅

⋅ − ⋅  
= = − ⋅  

 

G,x
sys sys

sysG,x

sys sys

cos sin

cos sin
cos sin

dV
m T m g

dt

T m gdV T
g

dt m m

Recalling the definition of acceleration, the x-momentum equation can be solved for acceleration as

( )θ θ
 

≡ = − ⋅  
 

G,x
G,x

sys

cos sin
dV T

a g
dt m

Substituting in the numerical information gives



Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
 Copyright  2001, American Society for Engineering Education

( ) ( )

( ) ( )2

   = ° − °   
  

   = −   
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G,x 2

2

2

2400 N m
cos 22.6 9.81 sin 22.6

200 kg s

m m
12.0 0.9232 9.81 0.3843

s s
m

7.31 
s

a

Example 2 -- Weighing Water

Known:  Water flows steadily through a tank that rests on a scale.

Find:  The scale reading.

Given:
Inlet Pipe @ 1

Volumetric flow rate =& 3
1 30 m / hV

Diameter D1 = 6 cm

Outlet Opening @ 2
Diameter D2 = 6 cm

Volume of water in tank at steady-state: Vwater = 0.6 m3; Weight of tank: Wtank = 500 N

Analysis

Strategy --- Since the problem involves forces, try conservation of
linear momentum.

System:  Open system that includes all water in the tank and the
tank as shown in the momentum system diagram.

Property to count:  Linear momentum and mass
Time Period:  Instantaneous

Writing the rate-form of the conservation of linear momentum
equation for this problem gives

= + −∑ ∑ ∑& &sys

external in out
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j i i e e

d
m m

dt

d
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F V V
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1 1mV&

2 2m V&
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Now writing the component of this equation in the y-direction as defined in the figure above

( )

[ ]

= + − + −

= + − + −

& &

& &

tank water scale 1 1,y 2 2,y

tank water scale 1 1,y 2 2,y

0

0

W W F m V m V

W W F m V m V
0
No y component @ 2

Solving for Fscale we have 

= + + &
scale tank water 1 1,yF W W m V

Now solving for the weight of the tank Wtank

( ) ( )ρ    = = = =     
3

water water water water 3 2

kg m
1000 0.600 m 9.81 5886 N

m s
wW m g V g

The y-component of the velocity at 1 and the mass flow rate at 1 are

( )ππ

ρ

 
× 

 = = = = =
 
 
 

  = = × =  
   

& &

&&

3

1 1
1,y 1

221
1

3

1 1 1 3

m 1 h
30 

h 3600 s m
2.95 

s0.06 m
44

kg m 1 h kg
1000 30 8.33 

h 3600 s sm

V V
V V

A
D

m V

Combining this to solve for the force of the scale on the tank Fscale

( ) ( )

( ) ( )

= + +

  = + +   
  

= +

=

&
scale tank water 1 1,y

kg m
500 N 5886 N 8.33 2.95 

s s

6386 N 24.6 N

6411 N

F W W mV

If the operator had neglected the effect of the water flowing into the tank on the reading, he or she would
have overestimated the amount of water in the tank by roughly 0.4%.
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Example 3 -- Gear Reducer

Known:  An electric motor drives a gear reducer under steady-state conditions.

Find:  The minimum electric power input required to produce 25 hp at the outlet shaft of the gear reducer.

Given: 

Required output shaft power, =&
shaft, out 25 hpW

Analysis:

Strategy --- Since the problem involves power, it should involve the conservation of energy.  In addition,
since it asks for the minimum amount it may also require the entropy accounting equation, the second law
of thermodynamics.

System:  Closed system that includes the motor and the
gear reducer

Property:  Energy and Entropy
Time Period:  Instantaneous

Writing the rate-form of the conservation of energy
equation gives

   
= + + + + − + +   

   
∑ ∑& & & &

2 2

sys net,in net,in
in out

sys

2 2i e

i e

d V V
E Q W m h gz m h gz

dt

d
E

dt
( )  

= + − + + + 
 

∑& & & &
0

2Steady-state

in electric,in shaft,out
in 2i

i

V
Q W W m h gz

 
− + + 

 
∑ &

0
2

out 2e

e

V
m h gz

= − && &

0
Closed system

electric,in shaft,out inW W Q

Writing the rate-form of the entropy accounting equation gives

sys

d
S

dt
= + −∑ ∑

&
& &

0
Steady-state

in

in outsurface
i i e e

Q
m s m s

T
+ ≥

−

& &

& &

0
Closed system

gen gen

in surface gen

with  0

 =   

S S

Q T S

Now combining the energy equation and the entropy equation by eliminating the heat transfer rate gives

+
–

shaft,outW&

electric,inW& inQ&
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( ) ( )= − = − − = +& & && & & &
electric,in shaft,out in shaft,out surface gen shaft,out surface genW W Q W T S W T S

Recall that the entropy production rate &
genS is always greater than or equal to zero.  (It can only reach zero

in the limiting case of an internally reversible process.) Thus ≥& &
electric,in shaft,outW W .

The minimum electric power input can be calculated as below:

 ( )  
= = = 

 
& &

electric, in shaft,outminimum

0.74571 kW
25 hp 18.6 kW

1 hp
W W

Notice that this analysis clearly indicates two important results. First, any losses (entropy generation) within
the motor or gear reducer increases the electric power required for a fixed output power. Second, it would
be impossible to transfer energy into the system by heat transfer and reduce the electric power require-
ments since this would require a negative entropy production which is impossible.

Experience with this Approach

The systems, conservation and accounting, and modeling paradigm described here can be used in
at least two different ways to improve the curriculum. First, it can be used as an integrating fea-
ture within a traditional sequence of engineering courses. Ideally, this would occur with the de-
velopment of a set of textbooks similar to the Series in Thermal and Transport Sciences published
by John Wiley in the later 1960’s. As originally planned, four University of Michigan professors—
R. E. Sonntag, G. J. Van Wylen, A. G. Hansen, and J. A. Clark—were to write a series of text-
books that provided an integrated presentation of thermodynamics, fluid mechanics, and heat and
mass transfer10. The systems, conservation and accounting, and modeling paradigm, however,
provides an even broader framework for making connections with apparently disparate parts of
the curriculum.

Second, it can be used as an organizing principle or framework for a new engineering science
core. This is the approach used at Texas A&M and at Rose-Hulman as described earlier in this
paper. At Texas A&M the new curriculum consists of five courses that are taken by some or all of
the engineering curricula. At Rose-Hulman the Sophomore Engineering Curriculum (SEC) is a
sequence of eight engineering and mathematics courses required of all electrical and computer
engineers since 1995 and of all mechanical engineers since 1998.  It is the author’s belief that the
most significant curricular improvements can only be achieved by the latter approach. At Rose-
Hulman, the new SEC resulted in a reduction in engineering science credit hours from 20 to 18
quarter credit hours and moved a required system dynamics course up three quarters (one year) in
the ME curriculum with no significant loss of content.

The development of the SEC at Rose-Hulman was guided by four underlying beliefs:
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• There exists a common core of engineering science and mathematics that all engineers
should learn.

• This core should serve as a foundation for discipline specific education not just an add-on.
• Integration of course material within a quarter (horizontal integration) and between quar-

ters (vertical integration) is important.
• Student learning can be improved if the core is built around a few key concepts.

The systems, conservation and accounting, and modeling paradigm described in this paper helped
us build a curriculum that was consistent with these beliefs.

The author believes that this paradigm has the following advantages for both students and faculty:
• it provides a conceptual framework which supports all engineering science courses.
• it provides a unified format for presenting and understanding the basic laws taught in

physics and chemistry that is uniquely suited for engineering applications.
• it enables a common, consistent problem solving approach for all courses.
• it helps students (and faculty) see connections between what are often perceived as appar-

ently unrelated topics by reinforcing the similarities underlying the basic principles,

The common problem solving approach emphasizes developing a problem-specific solution from
the fundamentals for each new problem and is an antidote to “plug-and-chug” solution techniques.
Before a student can solve a problem, they must first decide what basic principles apply—what
should they count, not what equation applies here? Next they must identify a system. This is ex-
tremely important because the basic laws in the conservation and accounting format are framed in
terms of accumulation within a system and transport across a system boundary. Using the equa-
tions in this format requires explicit knowledge of what your system contains and where the
boundary is located. Once the system and the governing principles are identified, the student must
simplify the governing equations. This is done using problem-specific modeling assumptions and
constraints. This approach requires the student to construct the solution from the problem infor-
mation and to explicitly state their reasoning. Whereas the “plug-and-chug” approach focuses on
what equation should I use, this approach stresses the underlying physical principles and the
common modeling assumptions. Since modeling assumptions and constraints are common to sev-
eral subjects, e.g. steady-state or closed system, this again reinforces the similarities between dif-
ferent topics. Finally the student is faced with collecting additional information to relate the un-
known variables. This typically takes the form of constitutive relations, e.g. the ideal gas model or
Coulomb friction model, that provide the additional equations required to solve for the unknowns.

In general, the response of faculty and students to the new curriculum has been very positive.
Students at Rose-Hulman have been surveyed at the end of their sophomore and senior year to
assess their feelings about the SEC. Most students comment favorably on their experience in the
SEC. Both in their answers to questions and volunteered comments, the students recognize and
appreciate the integration within the curriculum, e.g. “how things flowed” and “how things fit to-
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gether” as a couple of students put it. Most believe that the explicit attempts to demonstrate the
links and similarities between the various courses are beneficial and see the problem solving ap-
proach helping in the courses. Student opinion significantly improves by the end of the sophomore
year as they complete the entire sequence ending up with a system-dynamics-like course that
brings all of the topics back together.

Faculty members often comment that students appear to move farther through the topics in the
curriculum, e.g. as opposed to the standard coverage in dynamics. The reorganized curriculum
has some advantages in that the student spirals through the material as it is repeatedly reintro-
duced at higher levels continually building on the common framework. In addition faculty mem-
bers also indicate that using the framework has helped them learn to explain and solve problems
outside their stated areas of expertise. This has been the author’s experience as he has learned to
handle dynamics problems, and it has been repeated by colleagues in mechanics who can apply the
entropy and energy balance with confidence to explain a “

One of the biggest problems for both faculty and students is the lack of textbooks that follow this
approach. At both Rose-Hulman and Texas A&M work is continuing on course notes and text-
books to remedy this situation11,12.  Currently both programs use a combination of locally pro-
duced notes and standard textbooks. It is possible to use standard textbooks; however, anyone
who has carefully compared, say a fluids, thermodynamics, and a dynamics textbook quickly rec-
ognizes that there are significant differences in notation and conventions. “Is lb a pound-force or a
pound-mass?”, “Are pressures reported as gage or absolute?”, and a host of other hidden as-
sumptions are typically embedded within our textbooks. These become glaring inconsistencies
when you begin to teach across the disciplines, and you begin to understand the source of our
students’ frustration as they move on to each new subject.

P. Cornwell, a professor at Rose-Hulman, has done the most detailed study of the impact of this
approach in the SEC at Rose-Hulman, especially as it relates to the teaching of dynamics. Having
taught both traditional dynamics and the new sequence of courses he was in an excellent position
to evaluate the change.13 He made a quantitative assessment comparing student performance in
the traditional and the “new” dynamics course. After comparing the scores of students on identi-
cal short answer and work out problems, he found that all three majors—electrical, computer, and
mechanical engineers—did better in the new curriculum, especially on the longer work out prob-
lems. On the three work out problems, between 20-40% more of the SEC students worked the
problems correctly than did students in the traditional dynamics course. In fact after reviewing all
of the innovations he has tried in his courses, he found that restructuring the engineering science
curriculum using the systems, conservation and accounting, and modeling paradigm is the single
change that has most significantly improved student learning.14
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Conclusion

The systems, conservation and accounting, and modeling paradigm is an exciting new approach to
integrating and organizing the material in an engineering curriculum. This approach should be es-
pecially applicable to a discipline with the breadth of mechanical engineering. Two different insti-
tutions, Texas A&M and Rose-Hulman, have used it as the basis for new curricula. It can be used
to radically change the structure of the curriculum or it can be used as a way to sew together ex-
isting courses in the curriculum. Both anecdotal and quantitative assessment of this approach indi-
cates that it has helped students see the underlying structure of engineering science and in turn
improved their ability to solve problems. Faculty considering ways to improve student learning are
encouraged to consider how this approach could be incorporated into courses and curricula. As
we search for ways to help students better understand material and how to apply it in solving
problems, the systems, conservation and accounting, and modeling paradigm seems to offer sig-
nificant promise.
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