
An Integrated First-Year Curriculum for
Computer Science and Computer Engineering

David Cordes, Allen Parrish, Brandon Dixon, Richard Borie, Jeff Jackson and Patrick Gaughan
University of Alabama

Tuscaloosa, Alabama 35487

Abstract - The University of Alabama is an active
participant in the NSF-sponsored Foundation Coalition, a
partnership of seven institutions who are actively involved in
fundamental reform of undergraduate engineering
education. As part of this effort, the University of Alabama
has developed an integrated first-year curriculum for
engineering students. This curriculum consists primarily of
an integrated block of mathematics, physics, chemistry, and
engineering design. The engineering design course is used
as the anchor that ties the other disciplines together.

While this curriculum is highly appropriate (and
successful) for most engineering majors, it does not meet the
needs of a computer engineering (or computer science)
major nearly as well. Recognizing this, the Departments of
Computer Science and Electrical and Computer Engineering
recently received funding under NSF’s Course and
Curriculum Development Program to generate an integrated
introduction to the discipline of computing.

The revised curriculum provides a five-hour block of
instruction (each semester) in computer hardware, software
development, and discrete mathematics. At the end of this
three-semester sequence, students will have completed the
equivalent of CS I and CS II, a digital logic course, an
introductory sequence in computer organization and
assembly language, and a discrete mathematics course.

The revised curriculum presents these same materials in
an integrated block of instruction. As one simple example,
the instruction of basic data types in the software course
(encountered early in the freshman year) is accompanied by
machine representation of numbers (signed binary, one and
two’s complement) in the hardware course, and by
arithmetic in different bases in the discrete mathematics
course. It also integrates cleanly with the Foundation
Coalition’s freshman year, and provides a block of
instruction that focuses directly upon the discipline of
computing.

Introduction

The University of Alabama is undertaking an effort to
revitalize its freshman year in computing. This project,
sponsored in part by NSF under the Course and Curriculum
Development (CCD) program, is designed to institute
educational reforms in our first-year computer science and
computer engineering curricula. These reforms principally
involve implementing an integrated freshman core

curriculum common to computer science and computer
engineering majors. This integrated curriculum will heavily
involve the coordination of content and assignments for its
courses. We will utilize “just-in-time” instruction [5,6],
where topics are introduced in given courses at precisely the
appropriate time for those topics to be applied in other,
concurrent, courses.

Our goal of curriculum integration allows us to utilize
results from the Foundation Coalition, an NSF-funded
coalition of seven institutions, including The University of
Alabama, dedicated to the improvement of engineering
education. For several years, the Foundation Coalition has
engaged in engineering curriculum development activities in
three focus areas: curriculum integration, active learning, and
technology-enabled problem solving. Most notably, the
Foundation Coalition integrated mathematics, physics,
engineering design and chemistry from the engineering
freshman year. Our goals for integration are similar. We are
simply substituting the disciplines of mathematics, physics,
chemistry and engineering design with computer software,
computer hardware, and discrete mathematics.

The Status Quo

At the University of Alabama, the computer science major is
housed in the Department of Computer Science (CS), while
the computer engineering major is housed in the Department
of Electrical and Computer Engineering (ECE). There are
approximately 150 computer science and 150 computer
engineering majors. The two majors are distinguished by the
proportion of hardware to software exposure, as follows.

Computer science majors:
• The complete computer science core (CS I and II, data

structures, software engineering I and II, programming
languages, operating systems, algorithms);

• A limited computer engineering core (digital logic,
assembler, and computer organization and design);

• Various advanced computer science electives

Computer engineering majors:
• The complete computer engineering core (circuits,

digital and analog electronics, digital logic, assembler
and computer organization and design);

• A limited computer science core (data structures,
software engineering I and II);

• Various advanced computer engineering electives.

Although computer engineering majors do not currently
take CS I and II, they are instead required to complete two
introductory programming courses which are oriented toward
engineering applications. Currently, the intersection of our
curricula results in a common core as follows:

• Mathematics: Calculus I, II and III, Linear Algebra,
Discrete Mathematics;

• Computer Science: Data Structures, Software
Engineering I and II;

• Computer Engineering: Digital Logic, Assembler,
Computer Organization and Design.

The above “common core,” while representing a useful
set of courses for computer scientists and engineers, did not
provide a common foundation for freshman students in the
two disciplines. Moreover, quite the opposite is currently
true: the computer engineering freshman year consists
entirely of computer engineering courses, while the computer
science freshman year consists entirely of computer science
courses. Thus, students are entering the above core courses
with substantially different backgrounds.

The New Course Sequence

To address the problems associated with the current system,
we are constructing a common freshman year for computer
science and computer engineering students. This freshman
year is built around a series of five-hour courses on
computing that includes: a hardware (computer engineering)
sequence, a software (computer science) sequence, and a
mathematics sequence. The computer science and computer
engineering sequences are typical introductory sequences in
these disciplines; details are provided below. However, we
deviate significantly from classical norms with the
mathematics sequence. In particular, both computer science
and engineering students currently take calculus first, during
the freshman year. While we agree with the arguments that
the rigor of calculus provides a good mathematics foundation
for our students, we do not feel that calculus provides the
best domain material for computer science and engineering
students. Instead, we feel that discrete mathematics provides
much more useful domain knowledge for our students, and
early exposure to this material should promote a better
understanding of fundamental computer science and
engineering concepts. This view is confirmed by textbooks
such as [1,8] that are intended for freshman and sophomore
computer science students; textbooks such as these will be
very useful in assisting in this effort.

Thus, our proposed effort involves teaching discrete
mathematics, rather than calculus, as part of the common
freshman year. Calculus will still be required, but will not be
mandated during the freshman year. We believe that the
most novel aspect of our efforts is integration of these topics
into a single course. The idea is that the three basic topics
(software, hardware, discrete mathematics) are taught
concurrently and are coordinated so that related topics are
introduced together. To help define the organization of each
semester (and illustrate the course integration), we have
identified the following coordinated set of topics for each
group of courses:

Table 1: First Semester Courses
Week Software Hardware Discrete

Mathematics
1-2 Concepts of

programming,
Prog. language
introduction

Concepts of
digital
representation

Binary
systems,
Boolean
algebra

3-7 sequence,
selection, and
iteration
(S/S/I)

Hardware
analogs of
S/S/I (high-
level data
paths, micro-
program
execution)

Predicate &
propositional
calculus,
Induction,
proofs

8-10 functions,
procedures

Combinational
Logic

Sets, functions,
relations

11-13 data types
(arrays,
records,
strings, files)

Memory
organization,
Data storage,
Address
decoding

Big-O
notation,
Combinatorics

13-15 software
design &
testing

Hardware
design &
testing

Algorithm
analysis,
more proofs
(proving basic
properties of
algorithms)

Thus, we are exploiting a number of relationships
among these areas. For example, digital logic courses often
traditionally re-teach binary number systems and Boolean
algebra, topics that should have been covered in the discrete
mathematics course. With this approach, material in these
areas is taught properly within the mathematics course at
precisely the time that it is needed for the computer
engineering course. In addition to eliminating redundancy,
coordination also resolves problems associated with material
being taught in the wrong order. For example, students in a
traditional CS I course often have difficulty evaluating
complex conditions when constructing predicates for if
statements and while loops. Since our students are taught

truth tables and rules such as DeMorgan’s Law at
approximately the time that program conditions are
introduced, we find it much easier for them to understand
conditional statements in programs.

Table 2: Second Semester Courses
Week Software Hardware Discrete

Mathematics
1-3 Pointers,

dynamic
allocation

Instruction
addressing
modes

Graph theory,
Directed/undir
ected graphs

4-6 Data
abstraction,
Data structures
(stacks,
queues, trees,
lists, sets)

Assembly
implementatio
n of data
structures

Trees (rooted
trees, binary
trees, spanning
trees, weighted
trees)

7-9 Memory
models (static,
stack-based,
heap-based)

Stack frames,
Segmented
memory,
Protected
modes

Sets, functions,
relations
POSETs,
equivalence
relations,
composition,
closure

10-12 Recursion Assembly
coding of
procedures &
functions

Recurrence
relations

13-15 Case Study:
medium-scale
application w/
advanced data
structures

Case Study:
assembly and
machine level
version of the
CS application

Algorithm
analysis
Case Study:
analysis of the
CS application

The above coordination of topics also illustrates how
relationships are exploited to give students a better
understanding of how concepts fit together across discipline
boundaries. A case in point is our periodic presentation of
the same example. During the second semester, we develop
a case study involving a program in a high-level language,
show the translation of this example into assembly and
object code (effectively we show the material at the machine
level), and conduct a formal efficiency analysis of the
algorithms used. This allows students to anchor related
concepts in the same problem. Similarly, our parallel
discussions of software and digital design toward the end of
the first course allow students to visualize certain
commonalities and parallels.

Nonetheless, coordination is really the foundation of our
efforts, and to further illustrate the coordination, we
conclude this section with a detailed example of all of the
activities during the first two weeks of the first course. This
example better illustrates the level at which we conduct
coordination activities on a daily basis.

This table illustrates two distinct types of coordination
that we are utilizing. First, the idea of just-in-time delivery
of concepts is illustrated on Day 1 with respect to the
hardware and discrete mathematics. Since the math is
providing a number of concepts to support the hardware and
software concepts, we provide a “just in time” approach to
the discrete mathematics topics. Thus, on Day 1, bases are
introduced. Students then use this information in the
hardware discussion where they apply the concept of binary
numbers (something they just learned) as an abstraction of
digital signals. Note that just-in-time delivery does not have
to occur on the same day; we are also utilizing just-in-time
delivery of Boolean algebra concepts during Week 2; this
material is utilized during Week 3 when students learn about
conditions in “if” statements.

Table 3: Detailed Look at the First Two Weeks
Day Software Hardware Discrete

Mathematics
Mon.
Day 1

Basic program
concepts and
constructs

Digital signals
Unsigned fixed
length binary
numbers

Bases (10, 2,
8, 16)
Base
conversion

Wed.
Day 2

Simple I/O
Integer
variable
declarations/ex
pressions
Simple
assignment

Signed binary
numbers
Signed
magnitude
One’s
complement
Two’s
complement

Base X
arithmetic
(+, -, *,
/)

Fri.
Day 3

Characters
Simple
programs
involving
integers &
characters

ASCII
Gray codes
Excess codes
BCD

Mon.
Day 4

Floating-point
variables

Bases
Fractional
forms

Boolean
algebra
Basic
operators &
axioms

Wed.
Day 5

More on
assignment
Operators &
precedence

Floating-point
representation

Tautologies,
Contradictions,
Boolean
expressions

Fri.
Day 6

Wrap-up; lots
of examples
involving
straight-line
code

Floating-point
representation,
Machine
precision

A second type of coordination is observed on Days 2
and 3 with respect to computer hardware and software.

Students are learning about integer variables at the same time
they are learning about integer representation (Day 2); the
same concept is true with respect to character variables and
ASCII representation on Day 3. This is not just-in-time
delivery, but is instead learning about the same concept at
different levels of abstraction. We have found that, in
general, the hardware and software components are
coordinated most frequently using this technique, while the
coordination with discrete mathematics topics tends to be of
the just-in-time variety.

Active Learning Emphasis

We also utilize the concepts of active learning in
constructing classroom materials for this effort. Our
philosophy behind active learning involves students actively
taking responsibility for their own learning, as opposed to
being in the position of a mere “recipient” of instruction.
We utilize two techniques in this area: discovery learning
and cooperative learning.

Discovery learning involves motivating students to
“discover” problem solutions themselves. One application
of discovery learning to computer science involves providing
the students with data and a problem to solve, but no
algorithm. The students are then given an opportunity to
find the algorithm themselves. Current research shows that
students who discover a concept by themselves remember it
much longer and find it easier to transfer the concept to other
problem-solving situations than students who are just
presented with the concept through classroom lectures
[2,4,5,7].

The second strategy employed within the new
curriculum is cooperative learning, which has demonstrated
pedagogical benefits relative to traditional learning
environments [5,9]. Students interact and collaborate in
ways that require each individual to meet stated competency
goals. With cooperative learning, student questions and
answers stimulate involvement, multiple perspectives help
individuals to grasp concepts, and peer accountability
motivates team members.

Our notion of cooperative learning involves formalized
classroom group activities and out-of-class group projects.
For example, discovery exercises are presented that can be
solved by individuals or groups. Ideally, cooperative
learning rewards both individual accountability and positive
interdependence among group members. Individual
accountability should be guaranteed through individual
testing and peer grading; the effect of peer pressure in this
setting has been well documented and should not be
underestimated [3]. Positive interdependence simply means
that group members, although individually accountable, must
also be able to depend on other group members for positive
reinforcement. This can be enforced by mechanisms such as

giving a bonus on tests to groups where all members of the
group score above some threshold [5].

Throughout the proposed curriculum, we intend to
structure all class meetings so that we eliminate the
traditional lecture, and to follow a specific protocol
involving discovery and cooperative learning. This protocol
is structured around the four-quadrant learning cycle [6], and
is organized as follows for a typical 50-minute class meeting:

• Quadrant #1: Why study this? (Motivate the topic, 5-10
minutes). Establish a “feel” for the subject to motivate
the material to be covered during this class. This can
include stories, classroom demonstrations, simulations,
discussion, and group problem solving. The instructor
serves as motivator for the topic.

• Quadrant #2: What is it? (Inform the students, 15
minutes). Present the basic materials necessary for the
students to utilize this concept. The instructor serves as
expert on the topic during this phase, and delivers a
“mini-lecture.”

• Quadrant #3: How does it work? (Apply this principle,
15 minutes). Present problems and exercises designed
to ensure the students are capable of working with the
material. Many of these exercises will be discovery
exercises, although not always. Design the exercises to
promote interaction between team members. The
instructor serves as coach during this period.

• Quadrant #4: What if? (A self-discovery process as
students learn how to apply this topic, 10 minutes). This
stage is designed for the students to start applying the
knowledge learned, where the previous stage simply
focused on the problem-solving technique itself. The
instructor serves as evaluator/remediator.

All classes are structured in this fashion. In addition to
appealing to sound pedagogical foundations, this structure
provides the student with a classroom environment that is
constantly changing. A large part of any freshman course is
capturing, and keeping, the students’ attention. We have
found the above format works extremely well in this regard.

Summary

The curriculum described in this paper represent a common
15-hour freshman year for computer science and computer
engineering. Institutionalization plans are under
development to replace the current EE digital logic and
assembler courses (which are intermediate courses in the
existing curriculum) with this sequence.

This project presents a number of unique benefits. First,
we know of no computer science and engineering curricula
where discrete math is taught before calculus (although some
probably do exist). Our curriculum materials provides a
model for other programs to follow when considering and

implementing this type of reform. Second, we feel that the
areas being integrated (software, hardware and mathematics)
form the foundation for both computer science and computer
engineering. The possible methods for developing
connections between these areas seem endless, and our
model provides a basis for other institutions to explore these
interconnections.

Additionally, although there is a progression toward
active learning in education, the practice of active learning
techniques is far from ubiquitous. By scripting each active
learning based class meeting in detailed fashion, we are able
to provide a suite of materials to be used in a variety of
settings in teaching introductory computer science and
engineering. Even if our scripts are not used in detail, the
concept should provide a useful model for institutions
seeking to adopt active learning techniques.

References

1) Aho, A. and J. Ullman, Foundations of Computer
Science, Freeman, 1992.

2) Bransford, J.D., J.J. Franks, N.J. Vye, & R.D.
Sherwood, “New approaches to instruction: Because
wisdom can't be told,” Similarity and Analogical
Reasoning, S. Vosniadou and A. Ortony, eds.,
Cambridge Univ. Press, Cambridge, England, pp. 470-
497, 1989.

3) Brown, A. & A. Palinscar, “Guided cooperative learning
and individualized knowledge acquisition,” In Resnick,
L.(ed.), Knowing, Learning, and Instruction, Hillsdale,
NJ: Lawrence Erlbaum Associates, 1989.

4) DIMACS, “In Discrete Mathematics: Using Discrete
Mathematics in the Classroom”.

5) Felder, R., “Reaching the Second Tier: Learning and
Teaching Styles in College Science Education,” Journal
of College Science Teaching, Volume 23, Number 5, pp.
286-290 (1993).

6) Felder, R.M. and Silverman, L.K., “Learning and
Teaching Styles in Engineering Education,”
Engineering Education, vol. 78, no. 7, April 1988, pp.
674-681.

7) Fellows, M. R., “Computer Science and Mathematics in
the Elementary Schools',” Report on the Megamath
Project of the U.S. National Laboratories in Los
Alamos, New Mexico, 1991.

8) Gersting, J., Mathematical Structures for Computer
Science, Third Edition, Freeman, 1992.

9) Johnson, D.W., R. Johnson, and K. Smith, Active
Learning: Cooperation in the College Classroom,
Edina, MN: Interaction Book Company, 1991.

10) Wineke, W.R., et.al., The Freshman Year in Science
and Engineering: Old Problems, New Perspectives for
Research Universities, Alliance for Undergraduate
Education, Ann Arbor, MI.

