TVM Basic Concepts: B/C Ratio, IRR, and ERR

Module: 02.4 Revised: February 7, 2003

Purpose:

- Expand TVM (time value of money) concepts into the development of other cashflow evaluation techniques besides NPV. Specifically:
 - B/C Ratio problems Federally Funded
 - IRR & ROR Internal Rate of Return Banks
 - ERR External Rates of Return

Learning Objectives:

- Given appropriate data and making appropriate assumptions students should be able to determine the:
 - B/C Ratio
 - IRR, and
 - ERR

For simple project cashflows.

B/C Ratio is important because

- Most federally funded project require evaluation by B/C Ratio.
- 1937 Law stated that the benefits to whomever they may accrue must exceed the cost to the government.
- Various interpretations of exactly what that means.

B/C Ratio

Conventional Equation

■B/C = Yearly Benefits / Yearly Costs to Gov.

Modified Equation

B/C = Yearly Net Benefits / Yearly Net Costs

Note: every number is assumed to be annualized based on the same discount rate

■ B/C Ratio Example with i=0%

Every Benefit and Cost must be converted to an equivalent annual amount.

$$B/C = UB / (IC/Yrs + O&M) = 1.3$$

$$B/C = (UB - O&M) / (IC/Yrs) = 1.5$$

B/C Ratio with i%>0

		AE
Initial Cost	\$20,000,000	\$3,116,402
Salvage Value	200,000	\$13,164
Life = 10	10	
Interest = 9%	9%	
User Benefits	5,500,000	
O&M	\$2,000,000	
Net Benefits	=User Benefits	- O&M
Net Cost	=AE of IC - AE	of SV
Modified B\C=	1.13	
Benefits =	User Benefits	
Costs =	AE of IC - AE of	f SV + O&M
Conv B/C=	1.08	

The Costs are easy to quantify.

But what are user benefits?

Sometimes that's a judgment call.

RAT #02.4.1

- Pull out a sheet of paper.
- Individually work in 5-minutes:Given a project life of 50 years, an Initial Cost of \$25-million, annual benefits are \$1.25-million and O&M costs are \$500k. Neglecting interest costs and salvage value, what is the B/C ratio using the modified formula?

Typical Replacement Problem, B/C with i<>0%, n is finite

Three alternatives (A, B, and C) have been suggested to **replace** the current situation. Each of the alternatives has an expected life of 20 years with negligible salvage value. Use a 9% discount rate. Which would you pick using B/C ratio?

i=9%, n=20yrs	Current	Project A	Project B	Project C
Initial Cost (\$)	\$0	\$100,000	\$175,000	\$225,000
Annual O&M Cost	\$15,000	\$8,000	\$10,000	\$25,000
Annual Benefits	\$20,000	\$30,000	\$35,000	\$50,000

The basic approach is to evaluate the differences between the current and each suggested alternative.

Step #1: Convert everything to annual using the A=P(A/P,9,20) relationship.

Step #2: Compute deltas

Step #3: Compute B/C and pick "best."

i=9%, n=20yrs	Current	Project A	Project B	Project C
Initial Cost (S)	\$0	\$100,000	\$175,000	\$225,000
Annual O&M Cost	\$15,000	\$8,000	\$10,000	\$25,000
Annual Benefits	\$20,000	\$30,000	\$35,000	\$50,000
Conventional				
B/C Ratio				
Modified				
B/C Ratio				l

Conv B/C = Delta Benefits / (AC of IC - Delta O&M) Mod B/C = (Delta Benefits + Delta O&M) / AE of IC

i=9%, n=20yrs	Current	Project A	Project B	Project C
Initial Cost (\$)	\$0	\$100,000	\$175,000	\$225,000
Annual O&M Cost	\$15,000	\$8,000	\$10,000	\$25,000
Annual Benefits	\$20,000	\$30,000	\$35,000	\$50,000
A/E of IC		\$10,955	\$19,171	\$24,648
Delta O&M	As Bene fit	\$7,000	\$5,000	(\$10,000)
Delta Benefits		\$10,000	\$15,000	\$30,000
Conventional	Reduced O&A	0.50	1.06	0.87
B/C Ratio	Reduces Cost	2.53	1.06	0.67
Modified	Reduced O&AA	4	4.04	0.04
B/C Ratio	Adds Benefits	1.55	1.04	0.81

Rate of Return

- In essence any cash stream may be represented by a polynomial:
- PV = $A_0 + A_1*(1+i) + A_2*(1+i)^2$, ... $A_n()^n$ where A is any amount of \$\$'s
- The Internal Rate of Return (IRR) is that interest rate that causes the value of the equation to go to zero.
- Excel has a function that will find it, or "Trial and Error" as suggested by Halpin.

Trial and Error IRR Calculation EOY Amount -8,000 -8,000 -8,000 -8,000 2,000 1,818 1,667 1,633 1.600 1 3.000 2.479 2.083 1.920 2 1,999 3 4,000 3,005 2,315 2,048 2,176 5,000 3,415 2,411 2,048 2,220 % 0% 10% 20% 25% 22.50% NPW 6,000 2,718 476 -384 28 IRR Example 8,000 6,000 4,000 2,000 Increasing %

Some Hints.

- In math terms the "curve" decreases monotonically to the right to cross the X-axis. Therefore,
- NPV at 0% must be a positive number.
 So check that first.
- If NPV at 0% is a large number, IRR must be large so pick you first % at 20% or more to bound the answer.

RAT #02.4.2

- Pull out a sheet of paper and get your calculators ready.
- Take 5-minutes to compute the IRR of the cash flow table to the right.

EOY	Amt	
0	\$	(6,000)
1	\$	2,000
2	\$	2,000
3	\$	4,000

RAT #3.3.2, Continued

- Check with your Pair and see if you got the same answer? If not why not? Take 2-minutes.
- Now do the same with within Teams.
- Team ? What answer did you get? Etc.

Some More IRR Issues

- As you sum amounts from left to right, the cashflow equation changes sign at least once. Ill behaved cash flow may change sign more that once, indicating multiple roots.
- Ill behaved cashflows may approach the X-axis asymptotically implying an improbably large IRR.

External Rate of Return

- Works for all types of cash flows messy or otherwise.
- The Steps:
 - Discount all expenses to the Present at the "prime" (what you have to pay) interest rate.
 - Project all income to the Future at the "T-Bill" (what you can get) rate.
 - 3. Consolidate numbers and Solve resulting $P=F/(1+i)^n$ for i

Example ERR Year Cash Flow PV@8% FV@5% ASSUME: 10 000 10 000 8% borrowing 15,000 13,889 5% earning 1,000 1,407 2,000 2,680 Ten Year Project 4,000 5,105 Cashflow as shown 6,000 7,293 7,000 8,103 6 000 6 615 5,000 5,250 10 4,000 4,000 10,000 23,889 40,454

RAT #02.4.3

- Pull out a sheet of paper, get your calculators ready
- First As Individuals take 2 minutes to:
- List the steps necessary to perform a ERR analysis.
- Then as pairs take 2 minutes to:
- Combine and correct lists.

RAT 02.4.3, Continued

Now Individually work the problem.

Year	Cash Flow	
0	10,000	
1	15,000	
2	0	
3	1,000	
4	2,000	
5	4,000	
6	6,000	
7	7,000	
8	6,000	
9	5,000	
10	4,000	
	10,000	

Assume:

- 10% borrowing
- 5% earning
- Ten Year Project
- Cashflow as shown

When to Use Each Technique?

- It depends on what you are evaluating and who you are trying to convince.
- NPV adds to the "balance sheet" and the total worth of the organization or measures the value of an investment for "pricing" issues.
- B/C is required for most all Gov. projects.
- IRR% is how "investors" look at things. ERR% is more realistic but
- AE is how operators look at things and operating cashflow issues.

Class Assessment

• In one sentence, which topic do you think needed to be covered in more detail?