Active/Collaborative Learning Student Teams Integrating Technology Effectively Women and Minorities Assessment and Evaluation EC2000 Emerging Technology Foundation Coalition Curricula Concept Inventories
 
 
 
 
 
Appendix
 
Next: Questions Up: VECTORS, TENSORS AND MATRIX Previous: Review of Vector and   Chapters

Scientific Workplace Applications

Scientific Workplace can perform many time saving operations.

DOT PRODUCT

$\mathbf{u}=(1,x,y)$

$\mathbf{v}=(1,0,0)$

$\mathbf{u}\cdot\mathbf{v}=1$

CROSS PRODUCT

$\mathbf{u}=(1,2,3)$

$\mathbf{v}=(2,3,4)$

$\mathbf{u}\times\mathbf{v}=\left(-1,2,-1\right) $

SOLVING SYSTEMS OF EQUATIONS

$\begin{array}{l} 2x-3y+4z-8u+2v=-14\\ -x+8y-3z-u+6v=32\\ 6x+7y-2z+u-v=13\\ 20x+3y-6z+6u-4v=12\\ -x-6y-4z-2u-v=-38 \end{array}$, Solution is : $\left\{x=1,y=2,z=3,u=4,v=5\right\}$

This worksheet demonstrates how to compute gradient, divergence, and curl in rectangular coordinate systems. For additional help, see Scientific Workplace's help files.

GRADIENT

Gradient is defined as the del operator operating on a scalar field. Simply stated:


\begin{displaymath}\mathbf{del}\,f=<\frac{\partial}{\partial x}f,\frac{\partial}... ...frac{\partial}{\partial z}f> \text{where f is a scalar field.} \end{displaymath}

Gradient is a vector .

$f(x,y,z)=3x^2+2yz$

$\nabla f(x,y,z)=\begin{array}{c} 6x\\ 2z\\ 2y \end{array}$

DIVERGENCE

Divergence is the dot product of $\mathbf{del}$ and $\mathbf{F}$ where $\mathbf{F}$ is a vector field of the form:
$\mathbf{F}(\,x,y,z\,)=<A(\,x,y,z\,),B(\,x,y,z\,),C(\,x,y,z\,)>$. Simply stated:

\begin{displaymath}\mathbf{Divergence}\,\mathbf{F}=<\frac{\partial}{\partial x},... ...partial}{\partial y}, \frac{\partial}{\partial z}>\cdot<A,B,C> \end{displaymath}

Divergence is a scalar field .

$\mathbf{F}(x,y,z)=(x,y^2,z)$

$\nabla\cdot\mathbf{F}(x,y,z)=2+2y$

CURL

Curl is the cross product of $\mathbf{del}$ and $\mathbf{F}$ where $\mathbf{F}$ is a vector field of the form:
$\mathbf{F}(\,x,y,z\,)=<A(\,x,y,z\,),B(\,x,y,z\,),C(\,x,y,z\,)>$. Simply stated:


\begin{displaymath}\mathbf{Curl}\,\mathbf{F}=<\frac{\partial}{\partial x},\frac{\partial}{\partial y},\frac{\partial}{\partial z}> \times <A,B,C> \end{displaymath}

Curl is a vector field.

$\mathbf{F}(x,y,z)=(x^2,xz,y^2z)$

$\nabla\times\mathbf{F}(x,y,z)=\left( 2yz-x,0,z\right)$


Next: Questions Up: VECTORS, TENSORS AND MATRIX Previous: Review of Vector and   Chapters
 

Related Links:

Togel178

Pedetogel

Sabatoto

Togel279

Togel158

Colok178

Novaslot88

Lain-Lain

Partner Links