
Chapter 1

INTRODUCTION

Everything should be made as simple 
as possible, but not simpler. 

- Albert Einstein

Figure 1.1:

1.1 Motivation for a Closer View

In ENGR 211 (Conservation Principles In Engineering Mechanics), conservation laws were developed
from a common accounting framework statement:

9
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
 Accumulation of E.P.

within system
during time period


 =


 Amount of E.P.

entering system
during time period


 −


 Amount of E.P.

leaving system
during time period


 (1.1)

+


 Amount of E.P.

generated within system
during time period


 −


 Amount of E.P.

consumed within system
during time period




where E.P. stands for “extensive property”, like mass, linear momentum, angular momentum, or
energy, and where

Accumulation =
(

amount at end
of time period

)
−

(
amount at beginning
of time period

)
. (1.2)

It is extremely important to note that in the general statement of the conservation laws above, the
term system can refer to any region of space one defines it to be. In ENGR 211 the system was
chosen to be of macroscopic size; e.g., a length of pipe, a tank, a vehicle, a bridge, a block sliding on
an inclined plane, a pulley system, a translating and/or rotating rigid body, etc. As will be discussed
soon, it may be advantageous and also necessary to define a system of microscopic size and thereby
obtain a better understanding of the nature of the extensive property and other variables within the
system.

The above accounting framework led to four fundamental conservation laws:

• Conservation of Mass (COM)

• Conservation of Linear Momentum (COLM)

• Conservation of Angular Momentum (COAM)

• Conservation of Energy (COE)

For example, Conservation of Mass was written in word form as (assuming no generation or con-
sumption terms):


 Mass accumulation

within system
during time period


 =


 Mass entering

system during
time period


 −


 Mass leaving

system during
time period


 , (1.3)

where


 Mass accumulation

within system
during time period


 =


 Mass contained

in system at
end of time period


 −




Mass contained
in system at
beginning of
time period


 . (1.4)

In mathematical form, Conservation of Mass may be written as

(msys)end − (msys)beg =
∑

min −
∑

mout (1.5)

and in rate form as

dmsys

dt
=

∑
ṁin −

∑
ṁout, (1.6)

where the dot on top of a symbol designates the time derivative.
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The Conservation of Linear Momentum was written in rate form as

dPsys

dt
=

∑
(ṁv)in −

∑
(ṁv)out +

∑
Fext, (1.7)

where

Psys = linear momentum of the system = mv∑
Fext = external forces on system,

and the Conservation of Angular Momentum was written in rate form as

dLsys

dt
=

∑
(r × ṁv)in −

∑
(r × ṁv)out +

∑
Text, (1.8)

where

Lsys = angular momentum of the system = r × mv∑
Text = external torques on system boundary.

It should be recalled that equations (1.7) and (1.8) are general vector equations valid in any
coordinate system. In ENGR 211, we obtained special forms of the conservation equations for
translation and rotation of a rigid body with respect to the center of mass of the body (as well as
with respect to other reference points).

In developing and applying these conservation principles in ENGR 211, attention was restricted
to macroscopic systems. Some of these were:

• Static fluid in a tank and fluid pressure on a submerged body

• Fluid flow in/out of a tank or pipe

• Static analysis of rigid bodies such as blocks, truss members, and frame members

• Dynamic analysis of translating and rotating bodies and systems which included lumped
masses, rigid bars, rigid disks and other bodies.

In considering problems such as those listed above, we took an extremely important step in the
specification of the system to be considered. We chose the system large enough so that we could
effectively ignore the spatial variation of variables such as mass density, internal forces, velocity, en-
ergy, etc. within the system and, in some cases, also on the system boundary. For example, when we
considered the analysis of a truss structure, we assumed that each truss member carried an internal
tensile or compressive force over the member’s cross-sectional area. However, we never considered
the possibility that this force may be distributed over the cross-sectional area in some fashion. For
frame structures, we assumed that reactions at supports were axial and shear forces plus moments.
In considering fluid flow through a pipe or tank, we never considered what actually happened within
the pipe or tank, we only considered the net accumulation of mass, momentum or energy within the
system but not their distribution within the system. Similarly, we only considered the net amount of
mass, momentum or energy crossing the system boundary, but not their distribution over the system
boundary. Also, we only considered point external forces or torques acting on the system boundary
but not a distributed external force or torque system (recall that distributed forces were replaced by
equivalent forces and moments).

Such assumptions on and approximations to the distribution of variables within the system and
on the system boundary may at first lead to the question “Was the macroscopic view used in ENGR
211 accurate enough?” The answer is “It depends.” In many cases, a global or “big- picture” view
of a problem leads to perfectly acceptable engineering results that allow one to characterize the
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overall behavior of the system. However, situations exist where a more detailed view of the problem
is necessary. Consider the example of steady-state fluid flow through a straight, circular pipe. In
ENGR 211, we simply considered the fluid flow out of the pipe to have a certain volumetric flow rate.
Thus we assumed an average fluid velocity at the pipe exit. However, experimental measurements or
experimental flow visualization will show that most fluids are viscous and produce frictional forces
within the fluid and on boundary surfaces over which the flow passes. A viscous fluid (such as water
or oil) will want to stick to the boundary over which it flows. In fact, even air exhibits a measurable
amount of viscous behavior. Hence, the fluid velocity would be zero on the boundary of the pipe
and have a maximum velocity at the center of the circular pipe. Notice that we have now postulated
that the velocity will vary over the cross-sectional area of the pipe. In the most general case, the
fluid velocity will vary with position along the length of the pipe as well as over the cross-sectional
area (i.e., with respect to all three coordinate directions) and with time. In addition, we may want
(or need) to account for fluid compressibility (i.e., non-constant density).

In ENGR 211, the effects of fluid viscosity were neglected and the assumption of an average fluid
velocity over a cross-section was “acceptable”. However, neglecting viscous effects also meant that
we ignored energy losses due to heat generation (friction) and momentum transfer from the fluid to
the system boundary (due to frictional forces on the boundary). Neglecting viscous effects would
also mean that the fluid velocity and pressure would be constant along the length of the pipe, which,
from experimental observations, is not the case for the majority of fluids. Consequently, in many
applications, such an approximate macroscopic analysis is unacceptable.

It is resonable to ask, “What must be done in order to more precisely characterize the spatial
and temporal (time) variation of variables within a system.” The answer is that we must define
and analyze a sub-system that is much smaller in size than the characteristic length scale of the
whole system, and we must determine equations that define the spatial and temporal variation of
the variables of interest. As we shall see, this means that the system must be defined as a differential
volume (in the calculus sense), and differential equations must be obtained which characterize the
change in mass, linear and angular momentum, and energy from point to point and with respect
to time. As we shall also see, we will need to obtain certain relations between variables (called
constitutive relations) that define the input and output responses of each material (e.g., viscosity
coefficient, thermal conductivity, and elastic modulus).

1.2 Macroscopic vs. Microscopic

In this text we will focus on the construction and application of the conservation principles for a
continuum. As we will see in more detail in Chapter 2, a continuum is a material system that can
be divided into smaller subsystems of arbitrary small size for which all intensive properties (e.g.,
mass density) and other variables (e.g., velocity) are functions of position and time. Consequently,
we must define the conservation laws for a point in space instead of defining it for a finite system. In
other words, we are interested in defining conservation laws for the microscopic system as opposed
to the macroscopic system. We will discuss some examples from fluids and solids to demonstrate
the approach required in a continuum.

1.2.1 Fluids

It is instructive to explain the difference between the macroscopic and the microscopic by considering
some examples. Consider a tank with fluid inside and which has fluid entering and leaving through
the tank through orifices or pipes as shown below.

For a macroscopic view, we could consider the system to include the boundaries of the tank as
shown below. We may define the average density ρ, cross-sectional area A and magnitude v of fluid
velocity at each inlet/outlet. We could alternately define a volumetric flow rate (such as gallons per
minute) for each inlet or outlet which may be written in terms of fluid density, outlet area and flow
velocity.
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Fluid

Figure 1.2: Fluid Flow Into and Out of a Tank

 
 

ρ1, A1, v1

ρ2, A2, v2

ρ3, A3, v3

ρ4, A4, v4

Fluid

System
Boundary

Figure 1.3: Entire Tank Taken as the System

As was done in ENGR 211, we write Conservation of Mass by writing

(msys)end − (msys)beg = min − mout + mgen − mcon (1.9)

For steady state and no mass generation or consumption, the above reduces to

0 = min − mout (1.10)

This can be written in terms of the average fluid density (ρ), magnitude of average fluid velocity (v)
and cross-sectional area for each inlet and outlet to obtain:

0 = ρ1A1v1 + ρ2A2v2 − ρ3A3v3 − ρ4A4v4 (1.11)

In the above example, v1, v2, v3, and v4 are the magnitudes of the average velocity vectors at
the corresponding cross-sections. This provides a global or macroscopic picture of conservation of
mass for the tank. Notice that it does not take into account any of the details of mass flow within
the tank (the system) and only takes into account average (or bulk) values of mass flow across the
system boundaries (through the inlets and outlets). The macroscopic picture ignores any variation
in fluid velocity across the cross-section of the inlets/outlets, it ignores the frictional effects of the
fluid on the inlet/outlet orifices, and ignores all the fluid motion within the tank. We would expect
that due to the viscosity of the fluid and resultant the frictional forces between the fluid and the
tank/orifice walls, the fluid velocity will be smallest near the wall and largest near the center of the
orifice.
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In order to obtain a more accurate picture of the mass flow within the tank or within the
inlet/outlet orifices, we must reduce the size of the system in order to “see” these variations of
velocity with position. For example, we could consider any number of smaller systems (subsystem)
that include only a small portion of the tank, or one of the inlets or outlets as shown in Figure 1.4:

ρ1, A1, v1

ρ2, A2, v2

ρ3, A3, v3

ρ4, A4, v4

Fluid
Smaller
System
Boundary

Smaller
System
Boundary

Figure 1.4: Possible “Subsystems” That Could be Chosen

Consider one of the smaller systems in the tank. Fluid will be flowing into some portions of the
system boundary and flowing out of other portions of the subsystem boundary as shown below.

Fluid

Flow in/out of the smaller system

Figure 1.5: Smaller System Chosen Within the Tank

Rather than taking arbitrarily shaped systems as above, we could also define our system to
be a regular shape such as a rectangle (in 2-D Cartesian coordinates), a cube (in 3-D Cartesian
coordinates), a cylinder (in cylindrical coordinates), or any other “convenient” shape.

By defining the system boundary perpendicular to the coordinate axes, the mathematics will
be simplified. We learned this in calculus when the differential area or volume element was chosen
carefully to match the coordinate system being used, and the coordinate system was chosen carefully
to match the geometry over which integration was to be performed. Furthermore, if we define the
system small enough and take the limit mathematically (as in calculus), as its volume goes to zero,
we should be able to obtain a Conservation of Mass statement for any point within the body. The
resulting local conservation equation will be a differential equation, which, together with appropriate
boundary and initial conditions, will completely define the solution. Likewise, conservation of linear
and angular momentum will take the form of differential equations with appropriate boundary and
initial conditions. The development and solution of these governing differential equations will be
covered in some detail in the following chapters.
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Fluid

Flow in/out of the smaller system

x

y

z

Figure 1.6: Rectangular Subystem (Possibly Differential in Size)

As another example of this detailed flow, consider fluid flow through the exit pipe of the tank
example as shown in Figure 1.7 below:

 

Fluid Flow

Figure 1.7: Fluid Flow Through a Pipe

If we consider the macroscopic view of the pipe, we can only state the average inlet velocity
of the mass flow as it enters or exits the pipe (Figure 1.8a). However, as already discussed it is
reasonable to expect (and is confirmed by flow visualization experiments) that the velocity is not
constant over the cross-section. Due to the viscous effects, the magnitude of the flow velocity is
larger at the center of the pipe as shown in Figure 1.8b.

 

a) macroscopic view

Fluid Flow

z
vv

r

b) microscopic view

Figure 1.8: Macroscopic and Microscopic Views of Fluid Velocity Profile

Thus the fluid velocity is a function of the radial position r (in a cylindrical coordinate system)
and the axial position z (and possibly time if the fluid flow is not steady). Furthermore, in most
cases, this velocity function will be a smooth function of position, v = v( r, z ).
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1.2.2 Solids

The motivation for dealing with subsystems in solids is better demonstrated by looking at the
conservation of linear momentum. For rigid bodies, the fundamental construction of conservation of
linear momentum follows similar reasoning as for conservation of mass except that we must consider
the forces applied to the system. In ENGR 211, we idealized rigid truss members as having collinear
tensile or compressive forces at their end points (Figure 1.9).

Figure 1.9: Forces on a Two-Force Truss Member

This idealization was reasonable if we were interested only in information about the resultant
forces on the member ends and the truss joints or about the reactions at the truss supports.

For frame members, we likewise idealized the forces and moments carried by the member with
equivalent axial and shear forces plus bending moments. For example, consider the angled plane
frame member shown in Figure 1.10 below:

x

y

B

2 m

5 m

8 kN

20 kN

2 m

Figure 1.10: Frame Structure With Applied Loads

If we desired information about the forces and moments at point B (located at x = 2 m), we
defined a system (or free body) such as the one shown in Figure 1.11.

Note that the resultant force components F and V , and the bending moment M , are applied from
the environment to the free body. By applying the conservation of linear momentum (

∑
(F ) = 0)

and Angular Momentum (
∑

(M) = 0) as they were given in ENGR 211, we can determine that the
forces and the bending moment at point B are given by:

F = 20 kN (axial force)
V = −8 kN (shear force)
M = 16 kN m (bending moment)

Now we consider the notion that all the external forces on this system (free body) are in reality
applied over some finite contact area and vary continuously over this area. For example, the total
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2 m

2 m

x

5 m

8 kN

20 kN

F
M

V

Figure 1.11: Internal Reactions in Frame Member

 
Fx ∆Fx

A = cross-section

a) macroscopic view b) microscopic view

Figure 1.12: Resultant Force (Macroscopic View) and Force Distribution (Microscopic View) at
Cross Section of a Frame Member

axial force shown at point B is more accurately represented by a distribution of forces as shown
below (note the use of subscript x to indicate the x-component of the axial force):

Suppose that the member has a cross-section A at point x (point B), which is perpendicular to
the x-axis. Consider that the area A is divided into small areas and that a force ∆Fx acts on an
area ∆A in the x-direction as shown below (∆A may be arbitrarily shaped or regularly shaped to
follow a coordinate system):

 
x

∆Fx

∆A

Figure 1.13: Force ∆Fx Acting Over Small Area ∆A

Note that A =
∑

∆A and Fx =
∑

∆Fx. We define the limit of the quantity ∆Fx

∆A as ∆A → 0 to
be the normal traction tx, where the subscript x denotes a traction component in the x direction.
Notice that traction has units of force per area. As we reduce the size of the area (take the calculus
limit), we obtain

tx ≡ lim
∆A→0

∆Fx

∆A

force
area

. (1.12)

If the force varies over the cross-section, then clearly the normal traction will also be a function
over the cross-section. Consequently, the cross-section will have an equivalent force Fx, but the
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traction will vary over the cross-section. We may relate the equivalent (resultant) axial force Fx on
the cross-section to the traction in the x direction by integrating the traction over the cross-section
(again the subscript x is used with the axial force Fx to indicate that this is the x-component of the
resultant force):

Fx =
∫
A

txdA. (1.13)

The shear force in the y direction (Vy) may similarly be related to the traction component in the y
direction (shear traction) by integrating the traction over the cross-section:

Vy =
∫
A

tydA, (1.14)

where ty ≡ lim
∆A→0

∆Fy

∆A , and ∆Fy is the force acting on the area ∆A in the y-direction. In both

equations above, the traction components tx and ty vary continuously over the cross-section.
Note that since the normal traction tx varies over the cross-section, this causes a moment about

the z-axis located at the centroid of the cross-section. Consider the sketch below of a beam where
the traction tx is assumed to vary in the y-direction only.

 

x

y

z

h

b

dy
y

dMz

dFx

tx (y)

tx (y)

Figure 1.14: Normal Traction Distribution on Beam Cross-Section

The moment about the z-axis due to the traction component tx acting over a differential area
dA = dydz located at some distance y above the x-axis is given by:

dMz = −(txdA)y, (1.15)

The minus is required due to the sign convention for Mz (right-hand rule). Integrating over the cross-
section gives the equivalent moment on the cross-section due to the normal traction distribution:

Mz = −
∫
A

txydA, (1.16)

We note again the concept of a continuum and the microscopic approach vs. the macroscopic
approach. The quantity defined as traction varies with position over the cross section of the beam
member, while the resultant forces and moments do not.

For a more complex body, the tractions acting at a point would, in general, have three compo-
nents. For example, consider a structure such as Rudder Tower shown in Figure 1.15:

Choose an area of the structure for closer examination and define the system to be a differential
volume element of size dx× dy × dz and located at some position x, y, z. At this point, there would
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Area of
interest

Figure 1.15: Rudder Tower (a Macroscopic View)

 

 

x

y

z

dy

dx

dz

traction
components

Figure 1.16: Differential Volume Element (System) with Tractions Acting on Boundary

exist tractions on each face of the differential volume (for clarity, only the components of traction
on the visible faces are shown):
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The concept of traction will be discussed further as the Conservation of Linear Momentum is
developed in Chapter 3. It should be noted that tractions are similarly defined for both solid and
fluid bodies. An example of traction in a fluid is the hydrostatic pressure that a fluid exerts on a
submerged body (which was discussed in ENGR 211).

1.3 This Course

This course will develop the conservation principles for mass, linear momentum, angular momentum,
and energy for a continuum. In doing so, the system will be chosen as a differential element and
considerable use will be made of calculus and differential equations. Applications will be made to
such engineering problems as

• Viscous fluid flow

• Heat conduction in solids

• Deformation and stress distribution for the cases of

– Bars with axial loads

– Cylinders with torsional loads

– Beams in bending

The detailed study of such problems will necessitate that we develop other necessary relations
including

• Constitutive relations for fluids and solids. These are relations obtained from experimental
observations that relate stress to strain, frictional force to the velocity gradient in a fluid, and
temperature to heat flux. For example, in the relation F = kδ where F is the force on the
spring, δ is the extension of the spring, and k is the spring stiffness which is a function of the
material the spring is made of and must be experimentally obtained.

• Kinematic relations. These relate deformation to deformation gradients in a deformable contin-
uum body and are obtained from geometric considerations alone. They are similar to kinematic
relations used in ENGR 211 for many problems (pulley problems, rigid body dynamics where
tangential velocity can be related to angular velocity, etc. wherein the relationship depends
solely on the geometry of the particular problem).

1.4 Prerequisite Topics

Included here are typical problems studied in ENGR 211 that form the basis for the understanding
of conservation laws for macroscopic systems. As such, they are prerequisite topics that must be
understood. The student is urged to work these problems and review any unfamiliar areas before
continuing.
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Deep Thought

If you wake up one morning with a headache
and you think it might have been caused by
your troubles in continuum mechanics, consider
this solution: dissolve an aspirin in a glass of
water and drink it all at once.

Continuity helps relieve pain.
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1.5 Problems

1.1 Consider the three-bar frame structure shown at the right. The bars are pinned together at
A and B and the structure is supported by a pin support at E and a roller support at D.
Determine only the reactions at the supports. Show your results (magnitude and direction)
on a separate sketch.

7 in 

A 500 lb 

B C D 

E 

3 in 

7 in 

5 in 

Problem 1.1 

1.2 Consider the three-bar frame with the load 2 inches below joint A. The reactions at the supports
can be determined to be as shown on the right sketch. Determine the reactions on pins A and
C.

7 in 

A 

500 lb 

B C D 

E 

3 in 

5 in 

5 in 

2 in 

A 

500 lb 

B C 
D 

E 500 lb 

1,667 lb 

1,667 lb 

Problem 1.2 

1.3 The plane rigid frame is cantilevered at A. Determine

a) Internal reactions (axial, shear and bending moment) at a point 3 inches to the left of
point D.

b) Internal reactions at a point 5 inches to the left of point B.

In each case, show your answer (magnitude and direction) on a free body sketch.
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20 lbf/in

100 lbf

200 lbf-in

10 in 

5 in 

5 in 

A 
B 

C D 

E 

300 lbf

Problem 1.3 

1.4 Consider the truss structure shown. Typical spans are 2 m×2 m. The reactions are determined
to be Mx = −200 N, My = −1, 500 N and Ny = 2000 N. Determine the force in member IF
(and indicate whether it is in tension or compression). To make problem easier to grade put:
The reactions are determined to be Mx = −200 N, My = −1, 500 N and Ny = 2000 N.

A 

500 N 

F 

C D 

E H G 

I 
J 

K L 

M N 

2 m 

2 m 

B 

100 N 

100 N 

x

y

Problem 1.4 

1.5 An aqueous solution of sodium hydroxide contains 20% NaOH by mass. It is desired to produce
an 8% NaOH solution by diluting a feed stream of the 20% solution with a stream of pure
water.

a) Calculate the ratios (g pure H2O / g 20% feed solution) and (g product solution / g feed
solution).

b) Determine the feed rates of 20% solution and pure diluting water needed to produce
2310 lbm

min of the 8% product solution.

1.6 Fresh water
(
density = 1 kg

liter

)
flows through a tube which makes a 65◦ bend in the horizontal

plane. At the inlet, the velocity is a steady 30 m
s and the cross-sectional area is 100 cm2; at the

outlet the area has enlarged to 125 cm2. The tube is completely filled with water throughout
the bend and the transition in cross-sectional area is smooth.

a) Determine the outlet velocity vector.
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b) Determine the momentum of the fluid crossing the inlet during a time interval of 0.2
seconds.

c) Determine the components of the reactions Rx and Ry, keeping the bend in equilibrium.

 

x

y

v1 = 30 m/s

A1 = 100 cm2

v2 =?

A2 = 125 cm2

65◦

Rx

Ry

Problem 1.6 

1.7 Determine the reactions (forces and moments in cartesian coordinates) at point A. A force of
100 lbs acts at point B (in an x-y plane) and a torque of 300 in-lb acts at C.

 

 

 

 

 

x

y

z

A

B

C

300 lb-in

40◦
100 lb

14 in

8 in

4 in

Problem 1.7 

1.8 Determine the reactions and force in each truss member (and indicate whether the member is
in tension or compression).

4 ft

1,000 lb 

3 
3 4 

4 A 

B 

C 

Problem 1.8 
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1.9 Consider the truss structure which has a pinned support at A and a roller support at I.
Determine the force in members EF, BG and HG and indicate whether they are in tension or
compression.

A B C D E 

F G H I 

8 ft 8 ft 8 ft 8 ft 

8 ft 

4 kips 

Problem 1.9 

1.10 The structure to the right is a truss. It has a pinned support at A and a roller support
at C. Determine the force in all truss members and indicate whether they are in tension or
compression.

A B C 

D 

4 m 

200 N 

4 m 

2 m 

Problem 1.10 

1.11 The frame structure carries the distributed load shown. In addition, the entire structure has
a mass of 10 kg

m (of member length). Determine the equivalent force(s) on each member
(magnitude, direction, and location) due to the applied distributed load and the member
weight. DO NOT combine the equivalent distributed load and weight forces. Show your final
results on a separate sketch of the structure.

1.12 The frame structure carries the point load and moment shown. There is a pin support at A
and a roller support at C. Determine:

a) Reactions at A and C. Show on a sketch (magnitude and direction).

b) Internal bending moment at B.

1.13 The cantilever beam is fixed at its left end. Determine the equations for the internal shear
V (x) and bending moment M(x) using the coordinate system shown.
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A B 

C 

9 m 

10 kN/m 

6 m 

5 m 

15 kN/m 

Problem 1.11 

A B 

C 

6 m 

50 kN 

3 m 

5 m 
600 kNm 
 

3 m 3 m 

Problem 1.12 

4 ft 6 ft 

100 lbf/ft 

x

500 ft-lbf

Problem 1.13 


