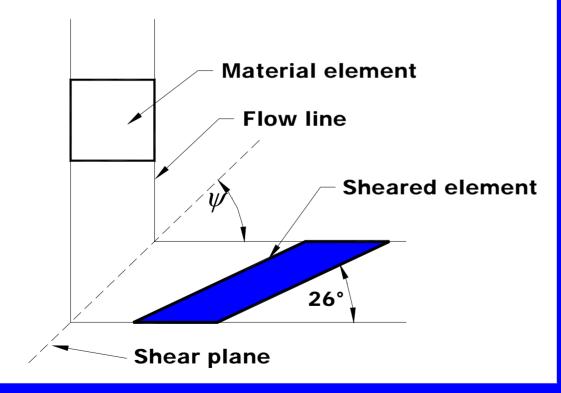

MEEN 489-500 Nanoscale Issues in Manufacturing

Equal Channel Angular Extrusion (ECAE) Lecture 2 : Bulk Nanostructured Materials


Description of ECAE

Conditions

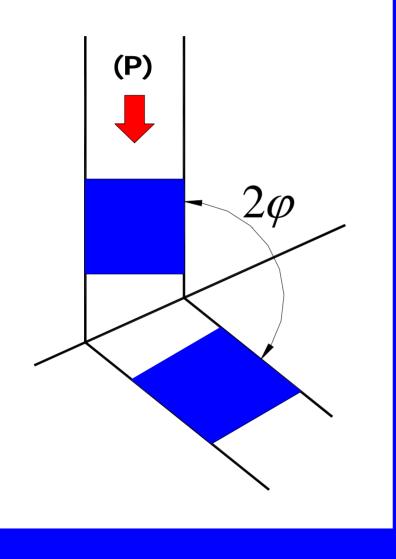
- 1. Inlet and outlet channels have nearly the same dimensions
- Channel intersection is abrupt
- 3. Lubrication and other means are used to reduce friction

Description of ECAE

Results

- 1. Simple shear occurs
- 2. Effective strain is (2/ $\sqrt{3}$) cot ψ or 1.16 for ψ =45°
- 3. Effective strain for multiple (N) extrusions is 1.16 N for ψ =45°
- 4. Strain is relatively uniform

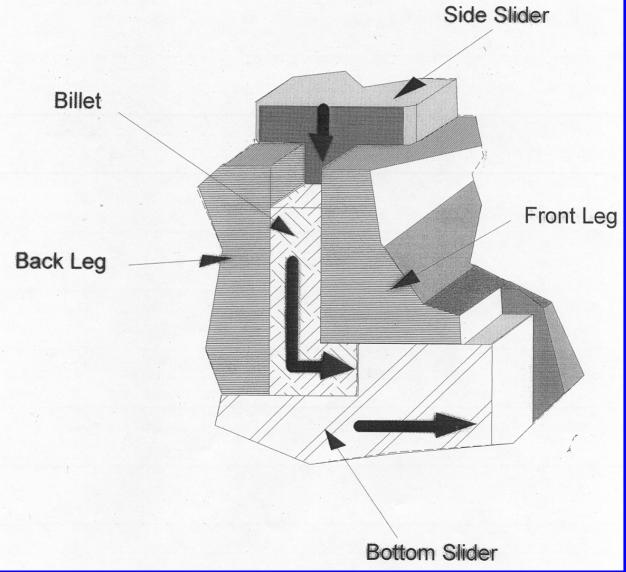
Example of material element distortion and near surface non-uniform strain in annealed OFHC copper

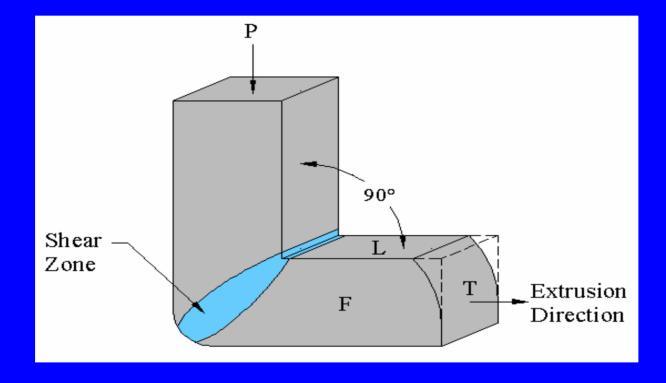

Benefits of ECAE

^{}**No Change in Workpiece Geometry **#Uniform Plastic Strain Relatively Low Extrusion Loads #Unlimited Strain Space #**Alternative Product Microstructures **#**Alternative Product Textures **#Relatively Simple, but Elegant Tooling**

Limitations of ECAE

#Material Ductility
#Current methods work only for simple cross-sections
#Some reshaping between extrusions may be necessary
#Surface and end losses

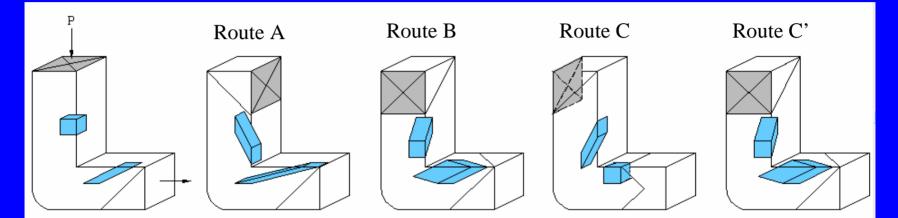

ECAE Mechanics


$$\frac{P}{Y} = \frac{2}{\sqrt{3}} \cot \varphi$$
$$\varepsilon_{total} = \frac{2}{\sqrt{3}} N \cot \varphi$$

Y: Flow stress N: Number of passes

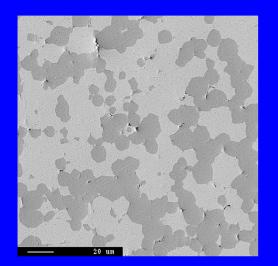
ECAE Process

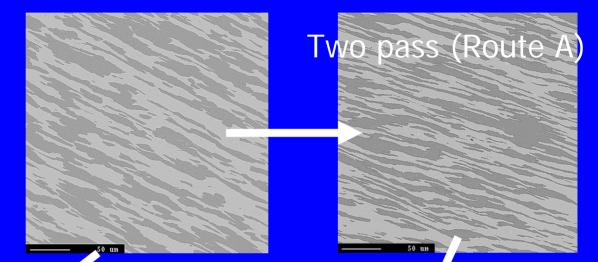
Definitions



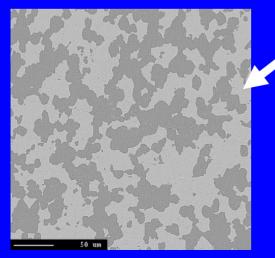
ECAE Route Description

First Pass (N=1)

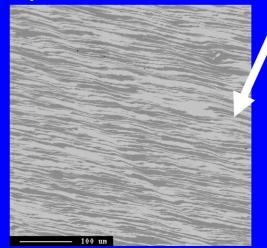

Second Pass (N=2)



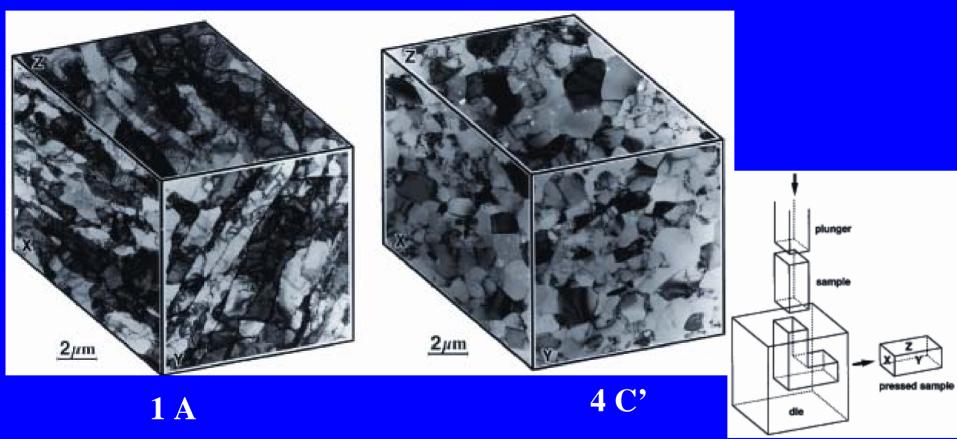
		Billet rotations about					
Route	Min. # of	the extrusion axis				Material	Effect on
name	passes	1 →	2 →	3 →	4 → N	Yield*	microstructure
А	1	0°	0°	0°	etc.	0.58	elongation (lamellar)
В (В _А)	2	+90°	-90°	+90°	etc.	0.67	elongation (filamentary)
С	2	180°	180°	180°	etc.	0.83	back/forth shearing
C' (B _C)	4	+90°	+90°	+90°	etc.	0.67	back/forth cross-shearing
E	4	180°	90°	180°	etc.	0.78	back/forth cross-shearing

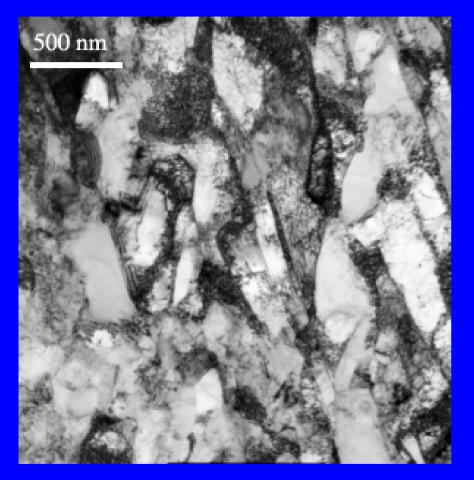

* Theoretical yield of fully deformed material after N=4 in billet with length/width ratio of 6

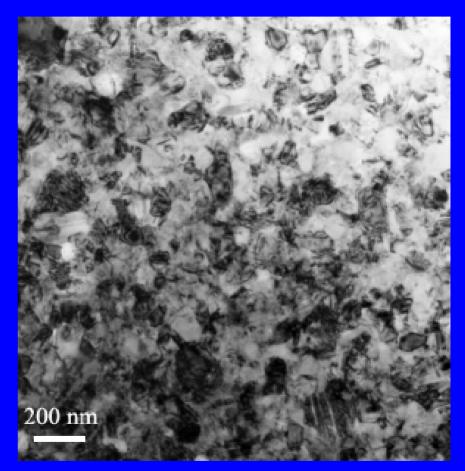
Effect of ECAE routes on morphology Microstructure of AgCu powder blend through ECAE passes



Compressed prior to ECAE One pass

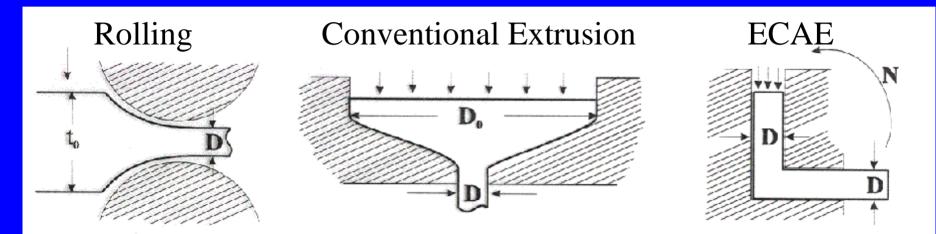

Two pass (Route C)


Four pass (Route A)


Microstructure after ECAE

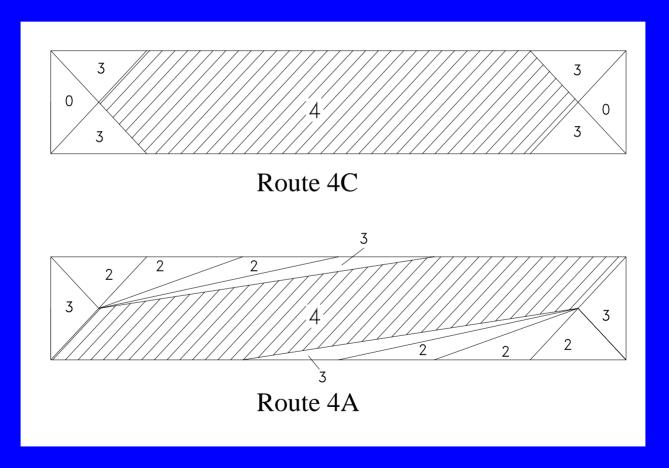
Al

Microstructure after ECAE


ECAE Die Angle Effects

			Equivalent		Conventional Extrusion	
Full Die	Punch	Strain	Reduction	Area	ECAE	
Angle	Pressure	Intensity	Ratio	Reduction	Pressure	Load
	Flow Stress				Ratio	Ratio
(2 _{1/})	(p/σ ₀)	(ε _i)	$(A_0/A_f)_e$	(AR) _e	(p _{CE} /p _{ECAE})	(p _{CE} /p _{ECAE})
150	0.27	0.31	1.37	30	1.80	2.50
120	0.58	0.68	1.95	49	2.20	4.30
90	1.16	1.17	3.20	69	2.50	8.00

Results of Multiple Extrusions Through a 90° Die


						Element
	Total	Equivalent	Equivalent	Angle of	Element	Surface
Number of	Strain	Reduction	Area	Element	Aspect	Area
Passes	Intensity	<u>Ratio</u>	Reduction	Inclination	<u>Ratio</u>	<u>Ratio</u>
			(%)	(deg.)		
0	0	0	0	0	1	1.0
1	1.15	3.2	69	22	5	1.4
2	2.31	10.2	90	13	17	2.0
4	4.62	105	99	7	65	3.4
8	9.24	10100	99.99	3	257	6.0

Comparison Between Conventional, Rolling, Conventional Extrusion and Multipass ECAE

Equivalent	Original Plate	Original Billet	Number of	
Reduction Ratio (A ₀ /A ₁)	Thickness (t ₀)	Diameter (D ₀)	ECAE Passes (N)	
3.2	3.2 x D	1.8 x D	1	
105	105 x D	10.2 x D	4	
10100	10100 x D	100 x D	8	

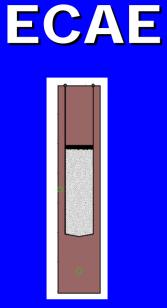
Limitations of ECAE

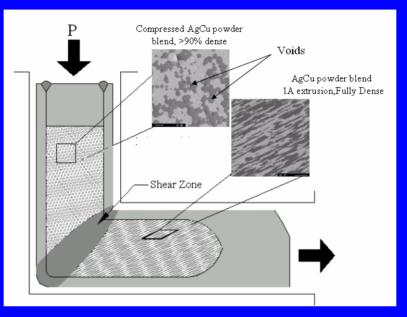
Reality Check

Process Attributes

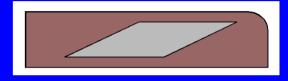
- Elegant Idea
- Simple Workpiece Geometry
- Basic Press Needed
- Large Strain in Bulk Product
- Uniform Strain
- Different Microstructures
- Different Textures
- Large Application Space

X Negative Aspects


- Undeformed End Zones
- New Approach to Deformation Processing


X Unknowns

- Scale-Up
- Continuous Processing
- Complex Cross-sectional Shapes
- Unknown Method Performance (Dead Zones, Inadequate Ductility...)



Consolidation of powder by

Can/Powder Description

- **#** Inert Can Material
- **%** Sufficient hydrostatic pressure
- **3 0.75 x 0.75 x 3.5 inch**
- **3 Barrier States 1.5 inch Long Cavity**
- **Loose Powder with ~0.35 Void** Fraction
- **¥** Vacuum Bake/Outgas
- **#** e-beam Weld Seal
- **#** Instrumented with Thermocouples

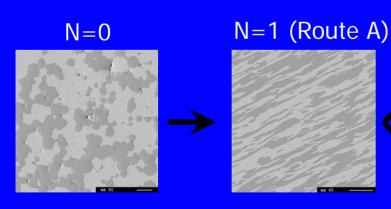
Deformation Conditions

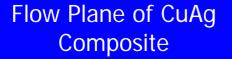
- **# 90° Die Angle**
- **#** Isothermal Tool
- **#** Constant Punch Speed
- **Hydrostatic Pressure**
- Simple Shear Uniformly
 Deforms Can and Encapsulate
- **# Heat of Deformation**
- **# Collect Measurements**
 - # Load-Stroke
 - **#** Time-Temperature

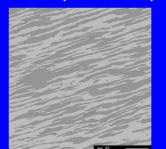
Extruded Billet Characteristics

- ***** Near Full Density
- Shorter Billet (Cavity Length Decreases by ~1/3)
- Cavity Geometry Changes Shape (Depends on Number of Passes and Route)

Potential Benefits of Powder Consolidation by ECAE

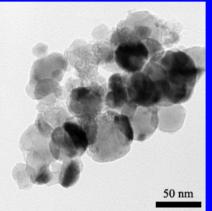

- **Small heated cross-section relative to conventional area reduction extrusion (better heat transfer conditions)**
- Large product cross-sections may be possible (conservation of cross-section during extrusion)
- **High length/diameter ratio product may be possible**
- **#** Combined compaction and shear
- **#** Consolidation to near full density after a single extrusion
- Consolidation to full density at lower temperature than needed for HIPing
- **#** Lower punch loads than for area reduction extrusion


Theoretical Change in Particle Surface Area for Different ECAE Routes


	Percent increase in cubic element surface area for different numbers of passes (N values)							
Name	0	1	2	4	8			
А	0	41	103	235	502			
В	0	41	67	158	345			
С	0	41	0	41	0			

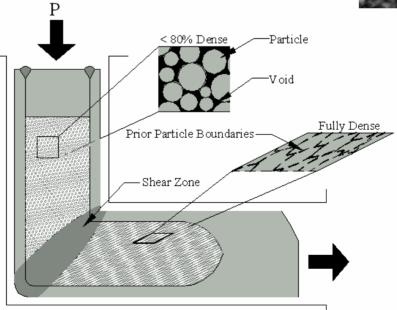
N=2 (Route A)

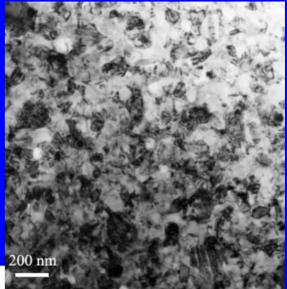
N=4 (Route A)



N=2 (Route C)

Powder Consolidation

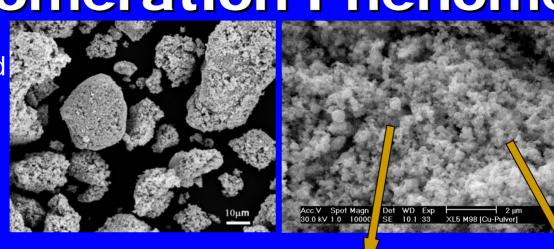

***** Nanopowder consolidation using ECAE

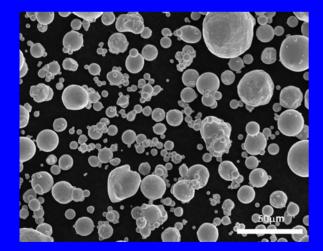


Nanopowders (Cu-50 nm, SS-100 nm, Cu-130 nm)

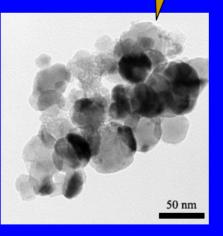
Consolidation in a can

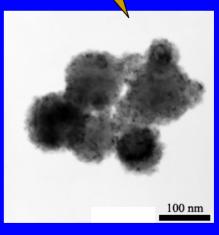
Nanopowder fabrication Methodology: Electro-Explosion of Wires




Consolidated 130 nn Cu powder

Agglomeration Phenomena


Electroexploded Nanopowder $(O_2 \approx 0.1 \text{ wt\%})$ (FNAA)


Agglomerates

Micropowder (DOE Ames) 99.99 wt% Cu, -325 mesh Ave. Grain Size: 4.2 microns (X-Ray analysis)

Average size 67 nm (X-Ray analysis)

Average size 130 nm (X-Ray analysis)