|
DOWNLOAD BROCHURE: Pdf | MS Word
A Unified Framework for Engineering Science: Principles and Sample Curricula
Don Richards, Louis Everett, Phillip Cornwell, Jeff Froyd, Walt Haisler, Dimitris Lagoudas,
Abstract
Engineering sciences were first formalized in the Grinter Report [1,2] and have been a foundation of engineering education for the past fifty years. Traditionally, engineering sciences have been taught in separate courses with each course focused on one of the engineering sciences: statics, dynamics, circuits, thermodynamics, and fluid mechanics. A different approach, teaching the engineering sciences within a unified framework, was pioneered at Texas A&M University and has since been adopted not only there, but also at Rose-Hulman Institute of Technology. The unified framework provides a common framework for understanding basic physical laws, e.g., conservation of mass, momentum, energy, and charge, and the Second Law of Thermodynamics, and applying these laws to development of mathematical models of engineering systems. The framework is built upon four concepts: 1) system, boundary and surroundings, 2) property, 3) conserved property, and 4) accounting for the exchange of properties across the boundary of a system. After presenting the concepts for the framework, the paper explores three different curricula that have been developed in which students study engineering science using the framework. Assessment results are presented for two of the three sample curricula.
I. Introduction
II. Conservation and Accounting Framework
III. Curriculum Structure: Texas A&M Four-Course Structure
IV. Curriculum Structure: Texas A&M Five-Course Structure
V. Curriculum Structure: Rose-Hulman Institute of Technology Sophomore Engineering Curriculum
VI. Example Problems
VII. Student Performance/Faculty Reactions
VIII. Conclusions
|
References
-
Grinter, L.E. (Chair), Report on Evaluation of Engineering Education, American Society for Engineering Education, Washington, DC, 1955.
-
Harris, Eugene M. DeLoatch, William R. Grogan, Irene C. Peden, and John R. Whinnery, "Journal of Engineering Education Round Table: Reflections on the Grinter Report," Journal of Engineering Education, Vol. 83, No. 1, pp. 69-94 (1994) (includes as an Appendix the Grinter Report, issued in September, 1955).
-
Glover, Charles, J., and Carl A. Erdman, "Overview of the Texas A&M/NSF Engineering Core Curriculum Development," Proceedings, 1992 Frontiers in Education Conference, Nashville, Tennessee, 11-14 November 1992, pp. 363-367
-
Glover, Charles J., K. M. Lunsford, and John A. Fleming, TAMU/NSF Engineering Core Curriculum Course 1: Conservation Principles in Engineering, Proceedings, 1992 Frontiers in Education Conference, Nashville, Tennessee, 11-14 November 1992, pp. 603-608
-
Glover, Charles J., K. M. Lunsford, and John A. Fleming, Conservation Principles and the Structure of Engineering, 3rd edition, New York: McGraw-Hill College Custom Series, 1992
-
Pollock, Thomas C., TAMU/NSF Engineering Core Curriculum Course 2: Properties of Matter, Proceedings, 1992 Frontiers in Education Conference, Nashville, Tennessee, 11-14 November 1992, pp. 609-613
-
Pollock, Thomas C., Properties of Matter, 3rd edition, New York: McGraw-Hill College Custom Series, 1992
-
Everett, Louis J., TAMU/NSF Engineering Core Curriculum Course 3: Understanding Engineering via Conservation, Proceedings, 1992 Frontiers in Education Conference, Nashville, Tennessee, 11-14 November 1992, pp. 614-619
-
Everett, Louis J., Understanding Engineering Systems via Conservation, 2nd edition, New York: McGraw-Hill College Custom Series, 1992
-
Glover, Charles J. and H. L. Jones, TAMU/NSF Engineering Core Curriculum Course 4: Conservation Principles for Continuous Media, Proceedings, 1992 Frontiers in Education Conference, Nashville, Tennessee, 11-14 November 1992 Conference, pp. 620-624
-
Glover, C. J. and H. L. Jones, Conservation Principles for Continuous Media, 2nd edition, New York: McGraw-Hill College Custom Series, 1992
-
Erdman, Carl A., Charles J. Glover, and V. L. Willson, Curriculum Change: Acceptance and Dissemination, Proceedings, 1992 Frontiers in Education Conference, Nashville, Tennessee, 11-14 November 1992, pp. 368-372
-
B. A. Black, From Conservation to Kirchoff: Getting Started in Circuits with Conservation and Accounting, Proceedings of the 1996 Frontiers in Education Conference, Salt Lake City, Utah, 6-9 November 1996
-
Griffin, Richard B., Louis J. Everett, P. Keating, Dimitris C. Lagoudas, E. Tebeaux, D. Parker, William Bassichis, and David Barrow, "Planning the Texas A&M University College of Engineering Sophomore Year Integrated Curriculum," Fourth World Conference on Engineering Education, St. Paul, Minnesota, October 1995, vol. 1, pp. 228-232.
-
Everett, Louis J., "Experiences in the Integrated Sophomore Year of the Foundation Coalition at Texas A&M," Proceedings, 1996 ASEE National Conference, Washington, DC, June 1996
-
Richards, Donald E., Gloria J. Rogers, "A New Sophomore Engineering Curriculum -- The First Year Experience," Proceedings, 1996 Frontiers in Education Conference, Salt Lake City, Utah, 6-9 November 1996
-
Heenan, William and Robert McLaughlan, "Development of an Integrated Sophomore Year Curriculum, Proceedings of the 1996 Frontiers in Education Conference, Salt Lake City, Utah, 6-9 November 1996
-
Mashburn, Brent, Barry Monk, Robert Smith, Tan-Yu Lee, and Jon Bredeson, "Experiences with a New Engineering Sophomore Year, Proceedings of the 1996 Frontiers in Education Conference, Salt Lake City, Utah, 6-9 November 1996
-
Everett, Louis J., "Dynamics as a Process, Helping Undergraduates Understand Design and Analysis of Dynamics Systems," Proceedings, 1997 ASEE National Conference,
-
Doering, E., Electronics Lab Bench in a Laptop: Using Electronics Workbench to Enhance Learning in an Introductory Circuits Course, Proceedings of the 1997 Frontiers in Education Conference, November 1997
-
Cornwell, P., and J. Fine, Mechanics in the Rose-Hulman Foundation Coalition Sophomore Curriculum, Proceedings of the Workshop on Reform of Undergraduate Mechanics Education, Penn State, 16-18 August 1998
-
Cornwell, P., and J. Fine, Mechanics in the Rose-Hulman Foundation Coalition Sophomore Curriculum, to appear in the International Journal of Engineering Education
-
Cornwell, P. and J. Fine, Integrating Dynamics throughout the Sophomore Year, Proceeedings, 1999 ASEE Annual Conference, Charlotte, North Carolina, 20-23 June 1999
-
Burkhardt, H. "System physics: A uniform approach to the branches of classical physics." Am. J. Phys. 55 (4), April 1987, pp. 344350.
-
Fuchs, Hans U. Dynamics of Heat. Springer-Verlag, New York, 1996.
Back
|
|
|
© 2001 Foundation Coalition. All rights reserved. Last modified
|
|
|
|