Active/Collaborative Learning Student Teams Integrating Technology Effectively Women and Minorities Assessment and Evaluation EC2000 Emerging Technology Foundation Coalition Curricula Concept Inventories
 
 
 
 
 
A Unified Framework for Engineering Science: Principles and Sample Curricula
 

Sophomore Engineering Curricula
Introduction  Conservation and Accounting Framework Curriculum Structure: Texas A&M four-course structure Curriculum Structure: Texas A&M Five-Course Structure
Curriculum Structure: Rose-Hulman Institute of Technology Sophomore Engineering Curriculum Example Problems

Student Performance/Faculty Reactions

Conclusions

 

Problem Solving using the Conservation and Accounting Framework

Now that the basic concepts of the conservation and accounting framework have been formulated, we can suggest a problem solving approach that is based on a set of generic questions. As students approach a new physical situation focusing on a recurring set of questions helps students focus on the important issues involved in formulating models of the physics situation and finding the desired quantities.

What is the system? Choose the boundary

This is almost always the starting point for the analysis of every physical situation. In each engineering science, the question of choosing the system is often phrased differently and the focus is on a node, a free-body diagram, a closed system, or a control volume. In fluid mechanics and thermodynamics this is usually accomplished when students are usually asked to sketch the control volume and in dynamics when students are asked to sketch the free-body diagram.   It is important for the students to learn that more than one system may be required for the solution of a particular problem.  Although terminology differs, the goal is always the same — a clear description of exactly what you intend to analyze. Implicit in this question is the need to clearly identify the boundary and the surroundings.  The conservation and accounting framework recognizes the interconnectedness of everything. To avoid becoming overwhelmed by the knowledge that almost everything is impacted by almost everything else, answering the first question forces the students to define the system, recognize the surroundings and consider the interactions between the two.

During the process students are required to clearly define a system and its boundary.  Then, they can apply the accounting principle by watching the boundary for things entering and leaving.  They can also watch the interior of the boundary to determine what changes inside. The boundary can be something physical like a rigid container, or it can be something imaginary.  A useful example for introducing concepts about the conservation and accounting frame is a checking account at a bank where the boundary is an imaginary boundary.  The bank does not have small areas where they keep money.  An account is simply a convenient way to think about your money.  A safe deposit box is a physical boundary in a bank and you could use it to apply conservation principles to money you put inside. The method requires students to carefully identify boundaries and interactions between the system and its surroundings.

What should we count?Choose what to count

Next, in order to apply the accounting principle students should determine what to count.  There are five quantities that are commonly counted in engineering problems.  These quantities are mass, momentum, angular momentum, energy, and entropy.  An advantage of the framework is it focuses attention on physical properties and helps students to think about physical processes in terms of these properties.  Further, the question focuses attention on what is actually happening in the problem in terms of the extensive properties.  Which of the extensive properties — mass, charge, linear momentum, angular momentum, energy, or entropy — should we be interested in?  Which of these properties are changing?

What is the time interval of interest?

This question focuses student attention on the process.  What type of process has occurred or will be occurring? This question is basically asking the students to identify whether the rate form of the basic principles or the finite time form is most appropriate.

What are the important interactions?

This question is intimately related to the previous question. For example if linear momentum is to be counted then the student should be on the look out for interactions that transport momentum: external forces and mass flow. Or if a student believes that forces acting on a system are important, then linear and possibly angular momentum must be counted. Although the mechanisms and names vary from property to property, the underlying idea of an exchange of something with the surroundings is a common feature of any engineering system.

Know how to count

The last thing that you need to be able to do is determine how much of a quantity is inside your boundary.  For example, if you are counting energy to solve a problem then you will have to determine the amount of energy inside your boundary.  The majority of the time spent in the class deals with this concept therefore it is impossible to enumerate all the intricacies here. Essentially these concepts involve relating temperature to internal energy, speed to kinetic energy and vertical height to gravity potential. 

Tools for Insight in Analysis

Two additional concepts that are sometimes useful in the analysis and design of a system are the degrees of freedom (dof) and order.

Order is the number of independent storage elements inside the system boundary. The easiest operational definition for independent storage is one that is not dependent on another. Two storage elements are dependent if knowing the quantity stored in one implies the storage in the other is also known. For example, a mass moving in a single direction has the ability to store kinetic energy and linear momentum. If the linear momentum is known, the velocity of the mass is known, once the velocity is known, the kinetic energy is also known therefore the mass has one order. If the mass can move in two directions, the order is two since knowing kinetic energy will not completely specify the two momentums but knowing energy and one momentum will fix the other momentum. Students often find the exercise of determining order helpful in identifying what conservation equations to write, knowing how many equations to expect when they are finished, and for helping to define a proper set of variables to use in the formulation.

Determining the Degree of Freedom (dof) is an exercise in identifying different types of variables. One type of variable is a flow or motion. For example, velocity and current are motion variables. The dof is the minimum number of independent motion variables required for describing the conservation equations. By determining the dof, students are forced to think about the problem formulation before they begin to write equations. In addition, the dof will indicate when extra constraint equations are required. For example, suppose a mass moves in a plane such that it remains a constant distance from a point of rotation. The mass has one dof because a single angle and its derivatives are sufficient to express all the motion related quantities in the conservation equations. If the conservation equations are expressed in terms of two variables (say horizontal and vertical positions) then the conservation equations will have more variables than can be uniquely determined. What is required is a kinematic constraint equation that relates the motion variables together. By counting the dof and the number of motion variables in the conservation equations, a student can determine if constraint equations are required.

Back

References

  1. Grinter, L.E. (Chair), Report on Evaluation of Engineering Education, American Society for Engineering Education, Washington, DC, 1955.
  2.   Harris, Eugene M. DeLoatch, William R. Grogan, Irene C. Peden, and John R. Whinnery, "Journal of Engineering Education Round Table: Reflections on the Grinter Report," Journal of Engineering Education, Vol. 83, No. 1, pp. 69-94 (1994) (includes as an Appendix the Grinter Report, issued in September, 1955).
  3. Glover, Charles, J., and Carl A. Erdman, "Overview of the Texas A&M/NSF Engineering Core Curriculum Development," Proceedings, 1992 Frontiers in Education Conference, Nashville, Tennessee, 11-14 November 1992, pp. 363-367
  4. Glover, Charles J., K. M. Lunsford, and John A. Fleming, “TAMU/NSF Engineering Core Curriculum Course 1: Conservation Principles in Engineering,” Proceedings, 1992 Frontiers in Education Conference, Nashville, Tennessee, 11-14 November 1992, pp. 603-608
  5. Glover, Charles J., K. M. Lunsford, and John A. Fleming, Conservation Principles and the Structure of Engineering, 3rd edition, New York: McGraw-Hill College Custom Series, 1992
  6. Pollock, Thomas C., “TAMU/NSF Engineering Core Curriculum Course 2: Properties of Matter,” Proceedings, 1992 Frontiers in Education Conference, Nashville, Tennessee, 11-14 November 1992, pp. 609-613
  7. Pollock, Thomas C., Properties of Matter, 3rd edition, New York: McGraw-Hill College Custom Series, 1992
  8. Everett, Louis J., “TAMU/NSF Engineering Core Curriculum Course 3: Understanding Engineering via Conservation,” Proceedings, 1992 Frontiers in Education Conference, Nashville, Tennessee, 11-14 November 1992, pp. 614-619
  9. Everett, Louis J., Understanding Engineering Systems via Conservation, 2nd edition, New York: McGraw-Hill College Custom Series, 1992
  10. Glover, Charles J. and H. L. Jones, “TAMU/NSF Engineering Core Curriculum Course 4: Conservation Principles for Continuous Media,” Proceedings, 1992 Frontiers in Education Conference, Nashville, Tennessee, 11-14 November 1992 Conference, pp. 620-624
  11. Glover, C. J. and H. L. Jones, Conservation Principles for Continuous Media, 2nd edition, New York: McGraw-Hill College Custom Series, 1992
  12. Erdman, Carl A., Charles J. Glover, and V. L. Willson, “Curriculum Change: Acceptance and Dissemination,” Proceedings, 1992 Frontiers in Education Conference, Nashville, Tennessee, 11-14 November 1992, pp. 368-372
  13. B. A. Black, “From Conservation to Kirchoff: Getting Started in Circuits with Conservation and Accounting,” Proceedings of the 1996 Frontiers in Education Conference, Salt Lake City, Utah, 6-9 November 1996
  14. Griffin, Richard B., Louis J. Everett, P. Keating, Dimitris C. Lagoudas, E. Tebeaux, D. Parker, William Bassichis, and David Barrow, "Planning the Texas A&M University College of Engineering Sophomore Year Integrated Curriculum," Fourth World Conference on Engineering Education, St. Paul, Minnesota, October 1995, vol. 1, pp. 228-232.
  15. Everett, Louis J., "Experiences in the Integrated Sophomore Year of the Foundation Coalition at Texas A&M," Proceedings, 1996 ASEE National Conference, Washington, DC, June 1996
  16. Richards, Donald E., Gloria J. Rogers, "A New Sophomore Engineering Curriculum -- The First Year Experience," Proceedings, 1996 Frontiers in Education Conference, Salt Lake City, Utah, 6-9 November 1996
  17. Heenan, William and Robert McLaughlan, "Development of an Integrated Sophomore Year Curriculum,” Proceedings of the 1996 Frontiers in Education Conference, Salt Lake City, Utah, 6-9 November 1996
  18. Mashburn, Brent, Barry Monk, Robert Smith, Tan-Yu Lee, and Jon Bredeson, "Experiences with a New Engineering Sophomore Year,” Proceedings of the 1996 Frontiers in Education Conference, Salt Lake City, Utah, 6-9 November 1996
  19. Everett, Louis J., "Dynamics as a Process, Helping Undergraduates Understand Design and Analysis of Dynamics Systems," Proceedings, 1997 ASEE National Conference,
  20. Doering, E., “Electronics Lab Bench in a Laptop: Using Electronics Workbench to Enhance Learning in an Introductory Circuits Course,” Proceedings of the 1997 Frontiers in Education Conference, November 1997
  21. Cornwell, P., and J. Fine, “Mechanics in the Rose-Hulman Foundation Coalition Sophomore Curriculum,” Proceedings of the Workshop on Reform of Undergraduate Mechanics Education, Penn State, 16-18 August 1998
  22. Cornwell, P., and J. Fine, “Mechanics in the Rose-Hulman Foundation Coalition Sophomore Curriculum,” to appear in the International Journal of Engineering Education
  23. Cornwell, P. and J. Fine, “Integrating Dynamics throughout the Sophomore Year,” Proceeedings, 1999 ASEE Annual Conference, Charlotte, North Carolina, 20-23 June 1999
  24. Burkhardt, H. "System physics: A uniform approach to the branches of classical physics." Am. J. Phys. 55 (4), April 1987, pp. 344–350.
  25. Fuchs, Hans U. Dynamics of Heat. Springer-Verlag, New York, 1996.

Back

 

Pilihan Pasar Angka Lengkap di Bandar Togel Terpercaya Internasional

Kami adalah Bandar Togel Terpercaya unggulan dengan pilihan pasar angka yang paling lengkap. Kami telah menjalin kerjasama dengan penyedia pasar angka dari berbagai negara. Selain itu, situs ini juga diakui secara resmi sebagai otoritas dalam permainan angka online internasional, menjadikannya tempat terbaik bagi para penggemar permainan ini.

Pasaran Hong Kong dan Sydney selalu menjadi pilihan populer bagi pemain togel. Situs Togel online resmi ini menyediakan kedua pasaran tersebut dengan jaminan keamanan dan keadilan dalam setiap pengundian. Pemain dapat menikmati berbagai fitur menarik yang akan menambah pengalaman bermain.

Platform togel IDN menawarkan berbagai pasaran menarik, salah satunya adalah pasaran Macau yang dikenal dengan jackpot besar. Para pemain memiliki peluang memenangkan hadiah fantastis dengan mengikuti permainan ini. dengan sistem yang transparan dan layanan customer service yang selalu siap membantu, Situs Togel menjadikan pengalaman bermain lebih menyenangkan dan bebas dari kekhawatiran.

Kesalahan Umum yang Harus Dihindari Saat Bermain Togel 2D

Banyak pemain melakukan kesalahan dengan memasang taruhan terlalu besar atau mengikuti insting tanpa strategi yang jelas di Bo Togel Hadiah 2d 110rb. Penting untuk menghindari overbetting dan selalu bermain dengan anggaran yang sudah ditetapkan. Dengan begitu, pemain dapat menikmati permainan dengan aman tanpa mengalami kerugian besar.

Strategi Terbaik Mengaktifkan Scatter Hitam untuk Bonus Maksimal

Scatter hitam adalah elemen kunci dalam Mahjong Slot yang dapat mengaktifkan beragam fitur bonus seperti free spin dan pengganda kemenangan. Setiap kali scatter hitam muncul di gulungan, peluang untuk meraih jackpot semakin besar. Strategi terbaik untuk memanfaatkan scatter hitam adalah dengan memasang taruhan yang sesuai dengan pola permainan. Mulailah dengan taruhan kecil hingga pola scatter terlihat, kemudian tingkatkan taruhan untuk memaksimalkan keuntungan dari simbol ini. Menggunakan scatter hitam secara strategis dapat menjadi jalan Anda menuju jackpot yang lebih besar.

Slot dengan mekanisme cluster pays menghilangkan garis pembayaran tradisional, menggantinya dengan sistem Slot Gacor di mana kemenangan terjadi saat simbol-simbol tertentu berkelompok di gulungan.

Slot Min Depo 5k memungkinkan Anda bermain lebih lama dengan modal yang kecil. Ini adalah cara yang ideal untuk mencoba berbagai jenis permainan slot tanpa harus melakukan deposit yang besar. Dengan modal yang terjangkau, Anda bisa tetap merasakan keseruan dan sensasi bermain slot online yang menegangkan.

Tips Cara Mudah Menang Menggunakan Fitur RTP Slot Tertinggi

Tidak sedikit pemain yang menyusun strategi mereka berdasarkan RTP slot gacor yang sedang aktif. Data mengenai RTP slot tertinggi hari ini sangat berharga bagi pemain yang serius ingin menang besar. Selain itu, fitur RTP live juga memastikan bahwa pemain selalu up to date dengan perubahan peluang di setiap permainan. Semua ini menjadikan slot online sebagai pilihan utama dalam perjudian digital.

Related Links:

Togel178

Pedetogel

Sabatoto

Togel279

Togel158

Colok178

Novaslot88

Lain-Lain

Partner Links